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Abstract 

We use mathematical modeling in decision analysis to help 

us obtain a "better" profit lottery than we can assess directly. 

The concept of the authenticity of probabilities is introduced to 

define the measure of "goodness" of the profit lottery. The role 

of modeling is to simplify our assessment task through the 

decomposition of the profit lottery. However, budgetary constraints 

force us to make approximations in the modeling process and thereby 

cause us to misstate the profit lottery. The models used in a 

decision analysis should be regarded as subjective expressions of 

our uncertainty rather chan as objective descriptions of the 

real-world. 

A methodology i* presented that quantitatively relates the 

modeling approximations made in a decision analysis to the results 

of the analysis. 
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INTRODUCTION 

To the Wizard and to the Clairvoyant, decision mahing is a 

simple matter. The omnipotent Wizard has the power to change 

anything in the world to suit his own taste. To him, there Is no 

such thing as a decision problem; he merely causes to happen what- 

ever he wishes.  The omniscient Clairvoyant, although lacking the 

Wizard's power to change events, possesses the power to foretell 

the future perfectly. To him, there is no uncertainty in decision 

making; he merely chooses the course of action whose consequences 

he most desires. 

By contrast, we lowly mortals cannot pretend to possess the 

Wizard's or the Clairvoyant's powers In decision making. But 

there Is a superbeing whom we do try to emulate — the Ellcltor. 

The Ellcltor can neither change nor foretell events and he 1(3 

therefore uncertain about the future.  However, he possesses the 

special ability to fully and accurately express his uncertainty In 

the form of probability statements.  In a decision problem, the 

Ellcltor assesses his probabilities on the future consequences of 

the alternative courses of action and, using his utility lunctlon, 

calculates the expected utility for each alternative. He then 

chooses the course of action having the highest expected utility. 

He is not assured that his decision will lead to the most desired 

outcome, but he is confident that his actions are wholly 

1 
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consistent with his preferences and with his uncertain under- 

standing of the future. 

In decision analysis, seeking to imitate the Elicitor, we 

likewise make probability statements about the future consequences 

of our actions and calculate the resulting expected utility for 

each alternative. But we unfortunately do not possess the 

Elicitor's ability to directly assess probabilities that fully 

and accurately express our uncertainty.  Recognizing this, we use 

modeling to help us obtain the requisite probability statements. 

Modeling is the source of most of our dissatisfaction with 

the results of particular decision analyses. While we do not con- 

test the validity of decision theory, we often complain that the 

models used in a decision analysis are "too simplistic" or "not 

realistic enough" or "not believable" and we therefore regard the 

results of the decision analysis with doubting eyes. 

How should we deal with our dissatisfaction about modeling in 

decision analysis? What do we mean by "goodness" in a model and 

can we quantify it? Can we, for instance, define an index of 

"realism" or of "credibility" on models? How should we choose 

among alternative models? For example, can we use the notion of a 

probibility-space of models? And how should we decide when to do 

more modeling? For instance, could we use the concept of the value 

of perfect modeling as an analogue to the value of perfect 

information? 

2 
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In this dissertation, I offer a way to think about modeling 

in decision analysis so that we can deal with our dissatisfactions 

meaningfully. Chapter 1 provides a philosophical perspective on 

the role of modeling, in decision analysis. Chapter 2 presents a 

methodology with which we can quantify our dissatisfaction about 

the modeling in a decision analysis and relate it to the results 

of the analysis. Chapter 3 is an example illustrating the use of 

the methodology and Chapter 4 is an extension of the methodology 

tu stochastic models. 
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CHAPTER 1 

A PERSPECTIVE ON MODELING IN DECISION ANALYSIS 

1.1 Introduction 

In theory, we do not need to use mathematical modeling to 

perform decision analysis. Analytically, a decision problem is 

defined by two variables: a decision variable d , represent- 

ing the alternative courses of action open to us, and an outcome 

variable v , representing the relevant consequences of our 

actions.  In decision analysis [7,8]  . we need only assess for 

each value of d the conditional probability distribution on v 

given d .  {vld.4} , called the profit lottery and state our 

risk preference oy specifying a utility function on v , u(v). 

Then, we can calculate the expected utility of each profit 

lottery: 

L {v|d,4} u(v) 
u. 

and identify that value d* of the decision variable correspond- 

ing to the profit lottery with the highest expected utility (i.e., 

the most preferred profit lottery). The optimal alternative is 

the one specified by d*. 

Although superfluous in theory, modeling is nevertheless 

indispensible to decision analysis in practice. In theory, we 

assume that we can directly assess the profit lottery, but in 

4 
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practice, we are unable to do so satisfactorily. Consequently, 

we turn to modeling to help us obtain the profit lottery. 

Our Ideal In decision analysis Is not to construct the 

perfect model, but rather to obtain the authentic profit lottery — 

the one that accurately expresses our uncertainty about the future. 

(See Figure 1.1 for a conceptual "roadmap".) We do not have the 

Ellcltor's ability to assess the authentic profit lottery directly, 

so we employ the modeling strategy, which would yield the authentic 

profit lottery if successfully executed. However, budgetary con- 

straints force us to make approximations in the modeling process; 

consequently, the profit lottery that we obtain through modeling is 

not the authentic profit lottery. The modeling approximations, 

then, are the sole source of our dissatisfaction. 

1.2 Aathetitic Probabilities 

We use modeling in decision analysis because we do not believe 

that the directly assessed profit lottery is good enough. 

/hit what is "goodness" in a profit lottery? The profit lottery, 

as a subjective probability statement [3,5,16]  , is the quantified 

expression of our beliefs about the likelihood of occurrence of real- 

world events beyond our immediate perception. A good probability 

statement is simply one that accurately find fully expresses our 

beliefs. To denote a good probability statement, I use the term 

"authentic", which the dictionary defines as "worthy of acceptance 

and belief." 

a.l.^^-.-w.--.-.-- .J'-.---^..- .■- ■ . ■■ ,. v. ^t,t- ,.„ ^-^-..^^ ..,„ ..-..- ... ,..--.—.--.ni^a.. uJ.^-^..  . -^-fiÄ-fai^v..,  .  ......^w-^.-^-^-.,^w.-JM.-; - ..-- 
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Authenticity is not the some as truenebs. The only test of 

goodness of a probability statement is whether or not we believe 

it. not whether it is true or false.  Indeed, it is not even 

meaningful to speak of a probability statement as being true or 

false. 

Compare, for example, the two statements: "It will rain 

tomorrow." and "The probability of rain tomorrow is 3/4." The 

first statement is an assertion about the real-world and is either 

true or false. We can determine its goodness (i.e., its trueness) 

by observing the «orld (tomorrow). The second statement, on the 

other hand, does not describe the rea]-world, but Instead 

expresses our uncertainty about the world. It makes no sense to 

say that it is true or false, but only that it is authentic or 

inauthentic. We cannot ascertain its goodness (i.e., its authenti- 

city) by appealing to the real-world, but rather only to our beliefs. 

The authenticity of a probability statement depends on our 

state of information. A probability statement that we accept as 

authentic based on one set of information may become Inauthentic 

when we receive additional information. For example, if we observe 

ralnclouds gathering overhead, our authentic probability for rain 

tomorrow may change. 

But how do we obtain authentic probabilities? Clearly, the 

authentic probability for .n event must reflect all of the informa- 

tion we  possess relevant to that event. Therefore, to assess the 
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authentic probability, we must review our entire state of 

infomation pertaining to the event and judge the likelihood of 

its occurrence on the basis of that information. 

This is a formidable task for almost any event. Since we 

believe that the world is highly interdependent, our state of 

Information is an extensive and complicated web of knowledge. 

Hence, we must retrieve, organize and process a large amount of 

information to assess an authentic probability. 

Consider, for example, the probability that the winner of 

the 1980 U.S. Presidential election is a member of the Republican 

Party. To assess the authentic probability for this event, we 

must consider every set of circumstances that might lead to its 

occurrence. We must review our knowledge of historical trends, 

of the current state of the Republican Party and of the Intentions 

and qualifications of potential candidates. We must relate the 

authentic probability to our uncertainty about intervening events, 

such as the outcome o' the 197t election and the possibility of 

war or depression before 1980. 

We encounter two major difficulties in trying to assess the 

authentic probability. First, we find that the task of consider- 

ing everything that might affect the outcome of the event is 

seemingly endless. And second, we find it virtually impossible 

to perform the requisite processing of the information without 

external computational assistance. 

8 
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Let us Imagine the existence of a person, called the 

Probablllst, who is capable of performing upon request any 

calculation using the rules of probability calculus (e.g., Bayes' 

Theorem, expansion, change of variable"». Then, we can state the 

following operational definition of authenticity: The authentic 

probability for en  event is the one we would obtain if we could 

spend an unlimited amount of time in introspection and if we had 

available the services of the Probabilist. 

It should be readily apparent that the authentic probability 

is, in most cases, an unattainable ideal. Even after lengthy 

introspection, we can almost always think of something relevant that 

we have not yet considered. And, of course, we do not possess the 

computational capabilities of the Probabilist. 

1.3 Operative Probabilities 

Since we cannot obtain authentic probabilities, we must use the 

probabilities that are based on only partial consideration of our 

state of information. These probabilities I call "operative". 

As a matter of notation, we can represent our incomplete 

consideration of the state of information 4 as C(4). Then, our 

authentic and operative probabilities for event E are: 

{Eh} p   Authentic probability 

{E|C(4)} * p   Operative probability 
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It is tiseful here to distinguish between two V.inds of 

uncertainty. The first kind, called primary uncertainty, is the 

uncertainty due solely to the finitenfss of our state of informa- 

tion and is expressed by authentic probabilities. The second 

kind, called secondary uncertainty, is the additional uncertainty 

due to the incomplete consideration of our state of information. 

Whereas primary uncertainty can be resolved only by receiving more 

information, secondary uncertainty can be resolved by further 

introspection and calculation. 

Conceptually, we can represent our secondary uncertainty as 

a conditional probability distribution on the authentic probability 

yiven partial consideration of our state of information: 

{p |C(4)} 
3 

Then,  the mean of this distribution is the operative probability: 

Po    -<pJC(4)> 

and the variance    V<p  |C(A))   is a measure of how much secondary 

uncertainty remains to be resolved and thus how "close" the opera- 

tive probability is to the authentic probability. 

As we spend more time In introspection and calculation, we 

reduce the amount of secondary uncertainty and thereby make the 

operative probability converge to the authentic probability. 

10 
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For example, the opfirative probability of a Republican 

victory in the 1980 election that we assign after only a moment's 

thought is "far" from the authentic probability; that is, since 

much secondary uncertainty remains, the operative probability may 

change significantly with further introspection and calculation. 

On the other hand, the operative probability that we assign to 

getting a head on the next flip of a coin is very "close" to the 

authentic probability because little secondary uncertainty remains 

and further cons.:? deration of our state of information is unlikely 

to markedly change the operative probability; in this case, we 

can say that the operative probability is virtually authentic. 

But what difference does it make how "close" the operative 

probability is to the authentic probability? If we must act with- 

out further consideration of our state of informütion, then it 

makes no difference how "close" the operative probability is to the 

authentic probability. However, if we are able to further consider 

our state of information before acting, then the "farther" the 

operative probability is from the authentic probability, the 

greater the value of doing some more introspection and calculation. 

For example, suppose that we are offered a choice between a 

sure $60 and a lottery yielding $100 if a specified event occurs 

and nothing otherwise; the event may be eithßr a Republican victory 

11 
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In the 1980 electiou or a head on the next flip of a coin. 

Suppoca further that our operative probability p  of a 1980 

Republican victor> is identical to our operative probability q 
G 

of a head on the uext flip of the coin, but that p  is "far" 

from the authentic pro'ability while q  is virtually authentic: 

p  ■ q  - Jj ro    Mo 

{pa|C(4)} 

{qjcoi)} 

^ 

0 < p < 1 
— a — 

otherwise 

5(qa - ^ 

Then, if we are prohibited from doing further introspection or 

calculation, it does not matter which event is used in the ].o:tery; 

in either case, the expected value of the lottery is $50 and our 

decision is to choose the sure $60. However, if we are permitted 

the opportunity to introspect and calculate before choosing, it does 

matter which event is used in the lottery. If the lottery depends 

on the coin flip, no amount of introspection or calculation vlll 

change the expected value of the lottery, so we would always take 

the sure $60. In this case, further Introspection and calculation 

has no value. On the other hand, it does have value if the lottery 

depends on the 1980 election. In this case, further introspection 

and calculation may reveal that the authentic probability is such 

12 
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that we would choose the lottery instead of the sura $60 

(Pa 
>.6). The erspe-.ted value of the decision given complete 

Introspection and calculation ia: 

" | <v|pa>{pa|C(4)} dp£ 

f    ft f i 
| "  60 dpa  +  j i    100 p^ dp, 

0 ,6 a ra 

36 

$68 

+  32 

Therefore, the expected value of complete introspection and 

calculation (i.e., the value of obtainit *; the authentic probability) 

is $68 - $60 - $8. 

The value of further consideration of our stace of information 

is analogous to the value of receiving additional information. In 

both cases, the value depends on how much uncertainty remains to be 

resolved and on how much is at stake in the decision. 

1.4 The Modeling Strategy 

In decision analysis, then, we want the authentic profit 

lottery ~ the one and only probability distribution that accurately 

expresses our beliefs about the future consequences of our actions. 

13 
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But In most decision situations, our state of information about 

the decision environment is much too complicated for our simple 

human minds to consider completely. 

For example, suppose that our declair- is whether or not to 

manufacture and market a new product. We mlf;ht be able to identify 

scores of factors that affect the outcome of our decision. Including 

the behavior of our competitors, the general economic conditions, 

the effectiveness of our advertising, the costs of raw materials, 

the efficiency of the manufacturing process and the regulatory 

behavior of the government. The authentic profit lottery must 

express our uncertain understanding of how each of these factors 

affects our profit and how each will behave in the future. 

Clearly, we would be hard pressed to process all of this 

information mentally. Consequently, the profit lottery that we 

assess directly is very "far" from the authentic profit lottery and 

the value of resolving our secondary uncertainty is high. 

Recognizing this, we turn to modeling to halp us resolve our 

secondary uncertainty.  In essence, the modeling strategy is one of 

divlde-and-conquer; in modeling, we decompose the profit lottery 

into smaller pieces that our simple minds can handle comfortably. 

Then, we rely on external means of calculation to reassemble the 

pieces to obtain the profit lottery. 

14 

■■n 11       ^. -■.^.z-..,!^.....^...*-,..:-.-^- -,-:.,.^■•^. .,-,■,....... ^..^^...^^^■■;...i,. -. ■ ....^.-^^..:^ „ .^. - .--'■■'-'iiitiiniituri-iin-   —-^■-^■-■;- ■*'■ ---^-^.^.a-i .^--^ . ^~.,^-.-        .     .-^      -.  ^■,    .^        .-... 



IHNiPPiiHam^ ^mm!mmmmmmmmmlmmmr'^t■T, i^mmrim^~*—***^*i*mm***^m—p*mfi'»im*vim.iamm   > nii^i«^p(Muiuiii.i iui»n 

1 

The modeling strategy Is as follows: 

1. Identify a set of real-world factors on which profit 

is believed to depend, representing them as state variables, 

denoted by the vector s. 

2. Encode our uncertain understanding of the dependence 

relationship between profit v and the decision and state 

variables d and s as a conditional probability distribution 

{v|d,s,4} . 

3. Encode our uncertainty about the future behavior of the 

state variables as a probability distribution {s^} 

4. Using external means of calculation, determine the 

profit lottery via the expansion equation: 

{v|d,4} =  [ {v|d,8,4}{8|4} 
' a 

Note that the modeling strategy does not relieve us of the 

necessity to assess probabilities. Rather, it merely substitutes 

for the direct assessment of the profit lottery the assessment of 

probabilities on the state variables and on the dependence relation- 

ship. 

The key to success of the modeling strategy, then, is select- 

ing a set of state variables such that we can handle the resulting 

assessment task satisfactorily. 
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If we can assess virtually authentic probabilities on the 

state variables and on the dependence relationship, then the 

modeling strategy would yield the authentic profit lottery, 

since the expansion equation is tautologically true. 

1.5 The Abridged Modeling Strategy 

Unfortunately, we can seldom fully execute the modeling 

strategy because we are limited by economic constraints on the 

decision analysis itself.  If a decision analysis is to be worth- 

while, its cost must be small relative to the resources allocated 

in the decision. Therefore, in any decision analysis, we must 

strictly limit the tine and effort devoted to obtaining the 

profit lottery. 

Full execution of the modeling strategy,  by contrast, would 

require much time and effort. Generally, the assessment of 

virtually authentic probability distributions on the state variables 

and on the dependence relationship would be very time-consuming. 

Furthermore, because we cannot analytically perform integration 

over an arbitrary continuous function, as required by the strategy, 

we would need to perform the integration numerically, which would 

also be exceedingly expensive. 

16 
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Recognizing that we are unable to fully execute the model- 

ing strategy within the budgetary constraints, we abbreviate it. 

The abridged Modeling strategy is as follows: 

1. Identify a set of real-world factors on which 

profit is believed to depend, representing them as state 

variables, denoted by the vector s. 

2. Identify a deterministic function g that 

approximates the dependence rexationship between profit 

v and the decision and state variables d and s  : 

v = g(d,s) 

The function g is commonly called the "model", 

3. Approximately encode our uncertainty about the 

future behavior of the state variables as a discrete 

probability function p(s). 

4. Using external means of computation, calculate 

the profit lottery via the expansion equation: 

Hd.4^ =1 6(v -  g(d,s)) p(8) 

The abbreviation of the modeling strategy results in the 

familiar decision tree representation of the decision problem. 

[23] (See Figure 1.2) The discrete steps of the state variables 

are represented as "branches" at the chance nodes of the tree and 

the profit assigned to each "tip" of the tree is given by the 

deterministic function: 

v = g(d,s) 

17 
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Figure 1.2; Decision Tree Representation 
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v ■ g(d1,s11,821) 

v >= g(d1,811,822) 

v - 8(d1,811,s23) 

v = g(di»812»
821) 

v - g(d1,812,822) 

v - g(d1,812,823) 

V - g(d2.811,821) 

V = g(d2,811.822) 

V = g(d2,811,823) 

V - g(d2,812,821) 

V - g(d2.812,822) 

V - g(d2,812,823) 

fei-^iu , . - .■^.•.-■.wM-.U.-.---J.'-.„J^—^.t-^,,. i-^.Mnrn|. ir,Bi-1   ^   . .- ■.■.i,t>--|>,1..^¥' -^    -■•■'-■—-'--'-■ --laUttifiaffiMrkt- i    i      i • wAhti, n - r-fi iVni ii in-imif Mi >i-II inr'-"-■■'—" •'•'-"~-'i-J'i-inifcrw'Br<i i -m i iiiniM'M^-«iB^<tiffctii t-ii inüiüMfiMB 



■  '"•"", nn^nimiii u.mmi.  II.U»L iuu;  v^imii^^OT^P**im*^lpipP||iiMi<jj.i. .iniiii i wmi^i^*&*^<*m* 

The degree to which we meet restrict the nember of state 

verlables aed the level of dlscreti2atlo„ of their dlstrlhutloos 

depends, of course, on the budgetary constraints of the particular 

decision analysis. Usually, the restriction Is „ulte severe 

because the size of the decision tree grows geometrically with the 

nuMber of variables and with the number of discrete steps In the 

distributions. More specifically, if we have H state variables 

and if „e discretize the i-th state variabU into ^ steps, the 

n^ber of tips k in the decision tree for each decision altema- 

tive is given by: 

k  = 
N 
n m. 

i=l i 

For each of the k tips. we nu8t evaluate ^ ^^   y _ ^ 

to deter.ine the profit associated with that tip and we .ust nmltiply 

together N probabilities to find the probability corresponding to 

that value of profit. 

Cleariy. the amount of computation required to solve a decision 

tree can easily become prohibitively large. For example, if we have 

ten state variables and if each is discretired into five steps, our 

decision tree wiU have n(!arly ten ^^  ^ ^ ^ ^^ 

alternative. Solving this tree would tax the capabilities of almost 

any computer and would incur an exceedingly high cost. 
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Consequently, to meet the budgetary constraints, we 

deliberately ignore our uncertainty about some of the state 

variables in the interest of computational economy. We select 

from the state variablo.s only those very few that have the 

greatest effect on profit, as revealed by sensitivity analysis, 

and designate them as aleatory variables. [19,27]  We assess the 

probability distribution on each aleatory variable and discretize 

it into only a few steps. We designate the remaining state 

variables as non-aleatory and, disregarding our uncertainty about 

them, fix each of them at a single representative value. In effect, 

we discretize each non-aleatory variable into Just one step Instead 

of into several. Typicallyt we have fewer than ten aleatory 

variables and we rarely discretize a distribution into more than 

three steps. 

The profit lottery that we obtain through the abridged modeling 

strategy is not the authentic profit lottery. The profit lottery 

from the abridged modeling strategy isi 

{v|d,4}m - I 6(v - g(d,8)) p(8) 

From the full modeling strategy, the authentic profit lottery is: 

{v|d,4}  -  [ {v|d,8,4} {sj^} 
•'s 
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The discrepancy between the modeled and authentic profit lotteries 

Is due solely to the two approximations made In the abridged 

modeling strategy: 

1. {v|d,s,4} = 6(v - g(d,8)) 

2. {8|4}      « p(8) 

I call the first the Dependence Approximation and the second the 

Distribution Approximation. In Chapter 2, I present a methodology 

for estlmatrig the size of the discrepancy In the profit lotteries 

caused by these two modeling approximations. 

1.6 The Subjective Nature of the Model 

In the abridged modeling strategy, we attribute all of our 

uncertainty about profit to our uncertainty about the state variables 

and none to uncertainty about the dependence relationship between 

profit and the state variables. 

This arrangement, although motivated by budgetary considerations, 

is also conceptually appealing because it mirrors the way in which we 

visualize the world. According to our Western world-view, we believe 

that phenomena do not occur spontaneously, but are caused or influ- 

enced by other phenomena; hence, we "explain" the occurrence of a 

phenomenon by establishing the occurrence of its antecedeits. Further- 

more, we believe that the Interactions among the phenomena are 

goverened by permanent rules of relationship (i.e., natural "laws"). 
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It is the role of science to increase our understanding of the 

world by discovering and codifying these rules of relationship 

through the careful observation of the universe. 

Applying this world-view to the decision situation, we 

believe that a particular level cf profit does not simply happen, 

but is caused by certain extraneous factors. We believe, then, 

that there exists a set of state variables £[ that completely 

determine profit through a fixed real-world relationship W : 

v = W(d,jO 

I call such a set of state variables "complete". 

We believe that, if we could predict the future behavior of 

the state variables £ and if we knew W , we could then predict 

profit exactly. We are thus led to idealize the modeling process. 

In the idealized modeling scheme, we determine W by examining 

objective real^world data and encode our uncertainty about the 

future behavior of the state variables as a probability distribution 

is}*}.    Then, through the relationship W , this uncertainty about 

the state variables translates directly into uncertainty about 

profit, expressed as the profit lottery: 

{v|d,A} 
J S 

6(v - W(d,S)) {S>} 

The abridged modeling strategy mimics this idealized modeling 

scheme in that no uncertainty is attributed to the dependence relation- 

ship between profit and the state variables. Rather, all uncertainty 

22 
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about profit is attributed solely to uncertainty about the state 

variables £ acting through the deterministic model g : 

{vld'4>ra " I <S(v - g(d,8)) p(8) 

But this arrangement is a misrepresentation of our beliefs. 

The modeling that we actually perform in a decision analysis falls 

short of the idealized modeling scheme in two major respects. First, 

the set of state variables ^ that we specify for use in the model- 

ing strategy is generally not complete. Typically, in a complex 

decision problem, although we can identify many different factors 

that influence profit, we select as state variables only those few 

that have the greatest effect on profit in order to restrict the 

assessment and computational costs. Consequently, we believe that 

profit depends not only on these specified state variables but on 

other, unspecified, variables as well. Even if we knew the value of 

each specified variable, we would remain uncertain to some extent 

about profit becauae of the effects of the unspecified variables. 

Let us represent the unspecified variables as the vector z. 

Then s and z together constitute a complete set of state variables: 

(£,£)  -  S 

Assume for the moment that we know W , the real-world re^ ationship 

between profit and this complete set of state variables, v - W(d,s,z). 
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Then, our uncertainty about the dependence relationship between 

profit v and the specified state variables s is: 

{v|d,8,4} -  I {v|d,8,z.4} {zjs.A} 

-  I 6(v - W(d.8,z)) {z|s,4} 

However, we generally do not possess sufficient real-world 

data to determine W ;  this is the second respect in which ve 

fall short of the idealized modeling scheme. Although we believe 

that there does exist a fixed real-world relationship between 

profit and the complete set of state variables, we are not know- 

ledgeable enough to say what it is. 

Let W^^ be one of several alternative relationships. Then, 

letting  {W1|4} be the probability that W1 is the actual 

relationship, our uncertainty due to this insufficiency of data can 

be represented as: 

{v|d,8,_z,4} 6(v ~ W (d,s,z)){W,|4} 
i     1 1 

We see, then, that our uncertainty about the dependence rela- 

tionship between profit v    and the specified state variables s 

has two sources our uncertainty about the effects of the 

unspecified variables z and our uncertainty about W  due to a 
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lack of sufficient data: 

{v|d,8,4}      -      |     |  6(V-  W1(d,8,z))   {W1|4}   {z|8,4} 
Z      X 

Clearly, we ignore both of these sources of uncertainty when 

we assert in the abridged modeling strategy that profit is com- 

pletely determined by the specified state variables si acting 

through the model g  : 

v - g(d,8) 

That is, in making this assertion, we assume clairvoyance both on 

2^   given   £   and on   W      : 

{zjs,^}   -    öU-z^s))      for some fixed    z^s) 

and ^(4}      -    6(W1-Wk) for some fixed   Wk 

Assuming this clairvoyance, we would have; 

{v|d,8,4}    -     j      I  6(v- W (d^HwjA)  {E|8.4} 

. f J    J S(v - WjCd.i,!» 6(wl - wk) 6(z - z^Ce» 
Z      X 

6(V - Wk(d,8.z0(8))) 

C(V -  g(d,8)) 

wiere    g(d,8)    -   W^d.s.z^s)) 
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But we do not possess such clairvoyance; we are Indeed 

uncertain about the dependence relationship between profit and 

the specified state variables. Therefore, we should regard the 

approximation made In the abridged modeling strategy: 

{vjd.s.A} « 6(v - g(d,8)) 

as just that  —  an approximation made for budgetary reasons. 

Despite the similarity in appearances, we must not confuse the role 

of the model g in the abridged modeling strategy with that of the 

relationship W in the idealized modeling scheme. Unlike W , the 

model g does not represent a real-world relationship between 

profit and the state variables, but is only a convenient surrogate 

for the probabilistic relationship thct  fully expresses our uncei- 

tainty. The model g is not an objective description but rather a 

subjective expression. 

Several writers [14,17,261  have suggested a probability- 

space of models as a vehicle for expressing our uncertainty about the 

dependence relationship.  The use of a model space is attractive 

because it allows us to employ Bayeslan techniques to choose among 

several alternative model forms in the face of real-world data. 

If we use such a vehicle, we must be careful how we interpret 

the probability assigned to each model In the space. As we have seen, 

unless the specified set of state variables is complete, there can be 

no "correct" model g that deterministically relates profit to the 

state variables; therefore, it is meaningless to speak of the 

probability that a particular model is the "correct" one or that 
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it embodies the actual relationship. 

However, there is a way that we can make a meaningful inter- 

pretation of the probability-space of models. Suppose that we are 

uncertain about which of several relationships w. is the actual 

relationship between profit and the complete set of state variables 

(8,z) : 

{v|d,s,z,i} -J 6(v - W1(d,s,z){W1|4} 

Then, we can write the conditional mean of   v   given    d    and   £   as: 

<v|d,8,4> -       I    v{v|d,8,4} 

j   v   |    j    6(v - W1(d,s,z)Hwi|A}{z|8,4} 

I     {WJ^}   I     [ v 6(v- W.(d,s,z)){z|s,4} 

[ {Wil4}  | V^lH«!«»^ 

| {Wi'4} 81W.fi) 

where we have defined: 

«iOM)  -  j W (d,8,z){z|s,4} 

-  <v|d,8,W1,4> 

Thus, we can expand the conditional mean <v|d,8,4) over a space of 

models, where the probability assigned to model g. is {WJ*} , 

the probability that the actual relationship between profit and the 
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complete set  sf state Vc\riables is    W.     ,    which we approximate 

by    g±' 

Note that even if W^  is the actual relationship between 

profit and the complete set of state variables: v = W (d,s,z)  , 

it is not true that g.  is the actual relationship between profit 

and the subset of state variables £ : v ^ g (d,s). 

To say that there is no "correct" model does not mean that 

the choice of function g in the abridged modeling strategy is 

unimportant.  The choice of g partially determines the closeness 

of the Dependence Approximation: 

{v|d,s,4} = 6tv - g(d,8)) 

and thereby affects the size of the discrepancy between the modeled 

and authentic profit lotteries. Although no function makes the 

approximation exact, we want one that makes it reasonably close. 

An obvious candidate is the conditional expected value: 

g(d,s) = <v|d,s,4) 

1.7 The Adequacy of Modeling in Decision Analysis 

We perform modeling in decision analysis not for its own sake, 

but rather to help us with the analysis. The adequacy of the model- 

ing in a decision analysis must therefore be judged according to how 

well it serves the purposes of the analysis. 
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In a decision analysis, we want to identify the optimal 

decision  —  that alternative whose corresponding authentic 

profit lottery has the highest expected utility. The modeling is 

adequate if it leads us to the optimal decision. 

It is easy to see how modeling might lead us astray. The 

approximations made in the abridged modeling strategy cause us to 

misstate the profit lottery and, hence, to misstate the expected 

utility corresponding to each decision alternative. The danger thus 

exists that the modeling might cause us to mistakenly identify as 

optimal an alternative whose authentic expected utility is not 

highest. 

This danger is especially great when much more modeling is 

required to obtain the profit lottery for one alternative than for 

another.  For example, suppose that the two decision alternatives 

are to either invest or not invest in a particular project. Obtain- 

ing the profit lottery for the first alternative may require 

extensive mod61ing while obtaining the profit lottery for the second 

may require none (zero profit).  In this case, the expected utility 

for the first alternative will be misstated while the expected 

utility for the second will not, and our decision analysis may then 

identify the wrong alternative aa optimal.  (See Figure 1.3). 

We can get an indication of the adequacy of the modeling in a 

decision analysis by using the methodology presented in Chapter 2. 

The methodology estimates the amount by which we misstate the 
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Figure 1.3i Effect of Modeling on the Decision 

Expected 
utility 

Modeled 

Authentic 

Modeled 

■ — and 

Authentic 

Invest Not 
Invest 

Decision 
alternative 

The "not Invest" alternative Is optimal, but the decision 

analysis wrongly Identifies the "Invest" alternative as optimal 

because the modeling misstates its expected utility. 
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authentic expected utility for each decision alternative because 

of the modeling approximations. If the mlsstatement Is shown to 

be relatively large, we may presume that the modeling Is Inade- 

quate . 

But what can we do If we judge the modeling to be Inadequate? 

The most direct approach Is to recalculate the profit lottery for 

each alternative, trying to get It "closer" to the authentic 

profit lottery by tightening one or both of the modeling approxi- 

mations: 

1. {v|d,8,4}  *  6(v - g(d,8)) 

2. {s|4}     = p(s) 

(Dependence Approx.) 

(Distribution Approx.) 

Hoping to minimize the additional computational costs, we 

might try to Improve on these approximations without enlarging the 

decision tree by choosing a different model g In the first approxi- 

mation or by choosing different discrete values of the state 

variables In the second. But these are only remedial measures and 

we cannot be assured that they will get us closer to the authentic 

profit lottery. Generally, It Is not because we have used the 

"wrong" model or the "wrong" discrete values of the state variables 

that the modeling Is Inadequate; rather. It Is because we have been 

forced by the budgetary constraints Into making tenuous modeling 

approximations. 
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Hence, to get closer to the authentic profit lottery, we must 

enlarge the decision tree. We can make the tree ,,taller,, by 

Including additional state variables or "bushier" by making a 

finer discretization of the aleatory variables or by redesignat- 

Ing some of the non-aleatory variables as aleatory. Or, acknowledg- 

ing that we are uncertain about the dependence relationship, we can 

replace the deterministic model g with a multi-point discretiza- 

tion of the conditional distribution  {v|d,£,4}. Any of these 

measures, of course. Increases the computational cost of obtaining 

the profit lottery. 

The methodology presented In Chapter 2 provides us with an 

Indirect vay of compensating for the Inadequacy of the modeling. 

The methodology yields an estimated correction term for the expected 

utility of each alternative, so we can accept as optimal that 

alternative having the highest corrected expected utility. However, 

we cannot do so with complete confidence, because the methodology is 

not exact. 

Clearly, the adequacy of the modeling in a decision analysis 

depends not only on our modeling skill, but also on the computational 

resources available to us. Although we usually like to think that 

we can model any situation, we must be willing to concede the possi- 

bility that budgetary constraints may prevent us from successfully 

modeling a particularly complex decision problem. In such a case, 

the results of the decision analysis may not be meaningful. 
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CHAPTER 2 

A METHODOLOGY:  THE EFFECT OF MODELING APPROXIMATIONS 

2.1 Introduction 

In decision analysis, the profit lottery that we compute by 

modeling is not identical to the authentic profit lottery, which 

we ideally want. The discrepancy between the modeled and authentic 

profit lotteries is due to approximations made in the modeling 

process. The methodology developed here allows us to quantita- 

tively relate the size of the discrepancy to the modeling approxi- 

mations made in the analysis. 

As an overriding goal, I have tried to keep the methodology 

simple enough that it can be employed quickly and easily to check 

the adequacy of the modeling in any decision analysis. 

Consider a decision problem defined by decision variable d 

and outcome variable v. We would like to obtain the authentic 

profit lottery {v|d,4}. To do this, we first specify a set of 

state variables s on which we believe v partially depends. The 

dependence of v on d and s can be expressed as a conditional 

probability distribution {v|d,£,4>. 

If we could assess the authentic distributions {*}&}    and 

{v|d,8.,4} and if we could perform the necessary integration, we 
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would obtain the authentic profit lottery via the expansion 

equation: 

(2.1)    {v|d,4} {vld.s^Hsj*} 

However, this Is not generally possible. Usually, we 

cannot afford the time and effort to fully assess the distri- 

butions nor can we analytically perform the required Integration 

over arbitrary continuous functions. 

Consequently, we make two modeling approximations to simplify 

our task. First, we assume that the probability distribution on e_ 

can be represented by a discrete probability function pCs). I call 

this the Distribution Approximation: 

(2.2) {s\&}   -     p(8) 

Included In the Distribution Approximation Is the fixation of each 

non-aleatory variable at a single representative value. In effect 

approximating Its distribution by a single-point discretization. 

Secondly, we assume that the dependence of v on d and B_ 

can be represented by a deterministic function g. I call this the 

Dependence Approximation: 

v =; g(d,8) 

or, equlvalently, 

(2.3)    {v|d,8,4}  « 6(v - g(d,8)) 

34 

-"TW 

MM»_  iiinn—iM^iMMMi^nM—«MMM^iilMMMMlMtt—üiaatin ■ 
-; — ■.^-.^^■^■^■^.■■.. -J 



|1|J>JU^P*U!I|II1LU fjii^ii^ii"» im |1(«WILI»,«J i imftjfl.W-rnr?^, 

Having made these two modeling approximations, we obtain the 

familiar block diagram representation of the decision problem and, 

equlvalently, the decision tree, as shown In Figure 2.1. We can 

then easily compute the modeled profit lottery: 

(2.A)    Hd,4>m " I 6(v - g(d,8)) p(s) 

But, because of the modeling approximations (2.2) and (2.3) , 

the modeled profit lottery {vld,4} from (2.4) Is not Identical 

to the authentic profit lottery {v|d,4} from (2.1). 

In the methodology that follows, we shall quantitatively 

characterize the modeling approximations and determine their effects 

on the discrepancy between the profit lotteries. We shall look at 

the approximations one at a time, starting with the Distribution 

Approximation. 

To facilitate the discussion, I shall use subscripts for the 

outcome variable v to denote the various stages of the develop- 

ment of the methodology (see Figure 2.2): 

m 
the modeled outcome variable 

the outcome variable corrected only for 

the Distribution Approximation 

the outcome variable corrected for both 

approximations (i.e., the authentic outcome 

variable, defined as the variable whose distribution 

is the authentic profit lottery) 

35 

iri»i.fcirafti-iif1tlaiVi.[1«ili1ri-.l .i...^...w., - ■ -   -■"-^---■^--■■r,-,||^-rtn<riln'nü'ilimrt ■>-'•■--■ ■-■—--^.t >"■'*-■■ n ilrr'tiffifiitfnUMhh'mgti^iVlniimiiii n'rin ■ runini.lltJliMiMl 



W^mmrn ■■■lim        ....-     .■<■■• UK >■■■■■  J! I    i, 11u,i JIBuii^■,      ...iii.    iwiniv^piwiiLKjijiiji, MI   .vni^qpCT<nppnpnpiMi>>*,-j-.i   .">^i«pinapin 

Figure 2.1; Models of the Decision Problem 

d 

1 
V 3 

P(8) 
»                  &\ v» »«*/ 

Block Diagram 

V - gCdj^.Sj^) 

i  v - g(d1,82) 

v « 8(^.83) 

v - g(d2'8i) 

v - g(d2,82) 

3^"^ v - g(d2,83) 

Decision Tree 
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Figures 2.2; Definition of Subscripted Outcome Variables 

v  ■ Modeled outcome variable n 

{v |d,4} - lS(v  - g(d,8)) p(a) m 

Correction for the 

Distribution Approximation: 

{sj^}    B    p(s) 

Outcome variable corrected only 

for the Distribution Approximation 

ivx\d*i}   = 6(V - g(d,8)){8|4} 

Correction for the 

Dependence Approximation: 

{v|d,8,4} « 6(v - g(d,s)) 

v,. ■ Authentic outcome variable a 

{Va|d,4}  =  j {v|d,8,4}{8l4} 
' a 
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The goal of the methodology Is to determine correction terms 

Av and Av for the mRan and variance of the outcome variable: 

Av - v - v 
a   m 

A^ 
v   v 
v - V 
a   m 

We shall consider in Sections 2.2, 2.3 and 2.4 the case in 

which there is only one state variable s and then, in Section 2.5, 

we shall extend the rosults to the multivariate case. 

2.2 Effect of the Distribution Approximation 

Assume that the state variable s is scalar and assume ^or the 

moment that v ■ g(d,s) exactly. We want to detennine the effect 

on the profit lottery of using the discrete distribution p(s) on 

the state variable rather than the authentic distribution {s|4}. 

For notational ease, let 

n ■ the state variable whose distribution is p(s) 

x ■ the state variable whose distribution is {s|4} 

The choice of "n" and "x" emphasizes that p(s) is uiscrete 

while {s\&}    is generally continuous. 

We characterize the Distribution Approximation by the differences 

in the mean and variance of x and n : 

As ■ x - n 

v 
As 

V      V 
x - n 
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If {a\i}    is known, As and As can be computed; otherwise, 

they can be assessed directly. 

Now, noting that vm - g(d,n) and v » g(d,x)  , we 

expand both vm and v  about n , using the first three terms 

of the Taylor Series  f111 : 

(2.5) 

where 

-.2 
vm a g(d,n) + g'(d,n)(n-n) + Ssg"(d,n) (n-n) 

-.2 
(2.6)    vx « g(d,n) + g,(d,n)(x-n) + ^"(d.n) (x-n) 

E^d,^) - 
6s 5(d,8) 

s«n 

g'^d^)  -  ■T-g(d,8) 
5s 

s=n 

Then, we take the mean and variance of (2.5) and (2.6)  (see 

Appendix A.l) and eliminate third- and fourth-order terms with the 

following simplifying assumptions (see Appendix A.2)  : 

0 Third central moment (8   -  i)3 

-x4 Fourth central moment    ■    (s - s) 

As a result, we have: 

(2.7) vm    « g(d,n) + hg"(d,n) n 

(2.8) Jm    a g'^n)2 n + Jsg"(d,n)2 n2 

v2 
3  3* 
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(2.9) vx    «    g(d,n) + g'(d,n)AS + ^"(d.n) (x + Ai2) 

(2.10) vx    =    g'Cd.n)2 x + »$g"(d,n)2 (x2 + 2^82) 

+ 2g'(d,n)g"(d,n) xAi 

By subtraction, we get: 

(2.11) (v - v ) * g'Cd.nMi + Jsg"(d,n)(Ao + Ai2) 
x   m 

(2.12) (J - v„) « g,(d,n)2As + >sg 
m "(d.n)2!"/ 

v v v    v -2 
As(x+n) + 2xAs 

+ Zg^d.^g'^d.n) xAi 
1 

These equations yield the estimated correction terms for the 

effects of the Distribution Approximation. Equation (2.11) is 

exact for quadratic g and (2.12)  is exact for linear g. 

2.3 Effect of the Dependence Approximation 

We now consider the effect on the profit lottery of the 

Dependence Approximation. To crmpute the profit lottery {v|d,.4} 

we assume that v is completely determined by d anu s : 

m 

v    -    g(d,8) 

In most real situations, however, we believe that    v    also depends 

on other less Important, unspecified variables.    Hence, by assuming 

the deterministic relationship, we have suppressed whatever uncer- 

tainty wt; may have about    v    for fixed values   of    d    and    s. 
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We characterize the Dependence Approximation, then, by a 

random variable e : 

v - g(d,8) + e 

Our residual uncertainty about v given d and s can be 

expressed as a conditional probability distribution on e , 

{e|d,8,4}.  For the purposes of the methodology, we assess the 

conditional mean <e|d,s,4> and variance  v<e|d,s,4>. 

Recalling that vx is corrected for the effects of the Dis- 

tribution Approximation, we have: 

(2.13)   va - g^x) + e - v + e 

Taking the mean and variance of this equation (see Appendix A. 3), 

we get: 

(2.14)   (vfl - v ) - e 

(2.15)   (v - v ) 
a   x e + 2cov(v ,e) 

x 

These equations yield the correction terms for the effects of 

the Dependence Approximation. 
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We can calculate e , e and cov(vx,e) as follows (see 

Appendix A.4) 

(2.16) e    -    J8<e|d,8,-4>{8|4} 

(2.17) e    -    |    |[v<e|d,8,4> +    <e|d,s,A>2) {s|4}J - i2 

(2.18) cov(vx,e) -    f    |g(d,8) (eld.s.i)  {s|-4}        - vxi 

Note that each of these calculations requires the integration 

of a function of d and s (e.g., <e|d,s,4» over the authentic 

distribution {a\^}. In most cases, we are unable to perform this 

integration and must approximate it with a summation over the dis- 

crete distribution p(s). This is Just another utilization of the 

Distribution Approximation; that is, for an arbitrary function 

f(d,s)  . 

f(d,8) {s|4} = If(d,s) p(s) 
Js s 

We can use the results of Section 2.2 to find correction terms for 

these calculations. Letting: 

z - f(d,x)  and  zm "  f(d,n) 
x n 

we see that 

z 

n   s 

f(d,s) {s|.4} 

I   f(d,8) p(8) 
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Then, we expand z  and z  about n , take the mean and sub- 
' x      n 

tract: 

(2.19)   (*x - *„) **'(<*.n)A5 + Jsf'Cd.^CAs + A52) 

This equation, with appropriate substitution for the function 

f(d.s) , yields the estimated correction term for each of the 

calculations in (2.16)  ,  (2.17) and (2.18) to compensate for 

the use of p(s) rather than {sJA}. 

Two special cases of the Dependence Approximation merit our 

attention. As the first special case, suppose that e is indepen- 

dent of s  ; that is, suppose that our residual uncertainty about 

v given d and s does not depend on s. Then, we need only 

_     v 
assess e and e to characterize the Dependence Approximation: 

<e|d,s,4> -  <e|d,-4> = e 

V<e|d,s,Ä>    -     V<e|d,A>   =      e 

If    e    is independent of    s    ,  it is also independent of    vx  , so: 

cov(vx,e)    -    0 

Thus, when e is independent of s , the correction terms for the 

Dependence Approximation from (2.14) and (2.15) become: 
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(2.20) (va - vx) 

(2.21) (vn - v ) 
v 
e 

As the second special case,  suppose that we find it easier to 

assess our residual uncertainty about the model    g    in terms of its 

output    v      rather than its input    s.    Then, we would assess     <e|d,vx,4> 

and    V<e|d,vx.4>        instead of  <e|d.8,4 >      and   V<e|d.s,4>    .    In this 

case, we can always determine    <e|d,8,i>     and v< e|d,8,A>     by a 

simple change of argument: 

<e|d,8,4>    -      <e|d,vx,4> 

v<e|d,s,A>   -    tf<e|d.v ,A> 

v =g(d,s) 

v -g(d,s) 
x 

However, suppose that our residual uncertainty about the model 

is proportional to its output vx in the following sense: 

<eld,vx.A> =   A vx 

V<e|d,vx,A>  -        B vx 

where    A    and    B    are constants.    Such would be the case,  for example, 

if    {e|d,v ,6}     were uniform or triangular over   e   with a base pro- 

portional to    v .    Then, we have (see Appendix A.5)   : 

<e|d,4> 

V<e|d,4> 

A v 

2    v - 2 
(B + A^) vx + B vx 

cov(vx,e) 
v 

A v 
x 

A4 
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So, for this special case, the correction terms for the effects of 

the Dependence Approximation from (2.14) and (2.15) become: 

(2.22)   (va - vx) 

(2.23)   (Ja - vx) 

A v 

(B + 2A + A2) v  + Bv 2 

2.4 Combined Effect of Both Modeling Approximations 

- v 
The correction terms Av  and  Av  for the combined effect of 

both modeling approximations are simply the sums of the correction 

terms for each approximation: 

(2.24)   Av = 

(2.25)   Av = 

(v
a - vJ a   m 

v    v 
(v - V ) 

a   nr 

(v - v ) 
a   x 

v   v 
(v - v ) 

a   x7 

Effect of 

Dependence 

Approximation 

(2.14), (2.15) 

(v - v ) 
x   m 

v   v 
(v - v ) 
x   nr 

Effect of 

Distribution 

Approximation 

(2.11), (2.12) 

In most cases, the deterministic model that we use to compute the 

profit lottery is composed of several submodels. We can use the methodol- 

ogy sequentially for each submodel to determine the cumulative effect on 

the profit lottery of the modeling approximations made in all of the sub- 

models. For example, referring to the model shown in Figure 2.3, we 

would first use the methodology to determine the correction terms Ay 
v 

and  Ay for the Intermediate variable y. Then, considering y as an 

input variable to the second submodel, we would use the methodology again 
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Figure 2.3;    Sequential Submodels 
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J           o\ ■•»"»/ ^ -v—» 

Ay, Ay 
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to determine the correction terms Av and  Av for the outcome 

variable v. 

Note that. If we use the methodology sequentially for several sub- 

models, we need the modeled mean and variance for each Intermediate 

variable.  Generally, the computer programs used to calculate the 

modeled profit lottery can easily be arranged to report these quantities. 

Going beyond the profit lottery, we can determine the effect of the 

modeling approximations on the expected utility and the certain equiva- 

lent by considering the utility function u(v)  as Just another submodel. 

We want to find the effect on the expected utility u of using the 

modeled profit lottery  {v|d,4}n  rather than the authentic profit 

lottery  {v|d,4}  as the distribution on input variable v.  This is 

the Distribution Approximation once again, which we characterize by the 
_       v 

correction terms  Av  and Av . From (2.11) , we have: 

(2.26)   AÜ = ul(v)Av + Vtv ) (Av + Av2) m m 

Suppose, for example, that the utility function is exponential 

with risk coefficient Y : 

u(v) 1 - e 
-Tv 

Then: 

u^v) Ye -Yv 

M/S    v 2 -Yv 
u (v) = Y  e 
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Substituting into    (2.26)     , we have: 

Au    *   ye     m(Av) 

-   Ye 

-    JjY2 e"Yvm (Av +Av2) 

'^mfAv   -    iiy(Av + Av2) 

The corrected expected utility Is then: 

u      ■    u     +   Au a m 

The corrected certain equivalent can be computed from the corrected 

expected utlj.lty. 

2.5 Extension to Multlvarlate Models 

We can extend the methodology developed In the previous sections 

to decision problems In which there are more than one state variable. 

However, the methodology Is practical only when the state variables are 

mutually Independent. 

Consider the multlvarlate model of a decision problem shovn In 

Figure 2.4. Outcome variable v Is dependent on decision variable d 

and on the state variable vector s. The dependence Is fully expressed 

by the conditional probability distribution {vld.s,^, but Is 

approximated for purposes of analysis by a deterministic relationship 

g 5 

{v|d,s,A}  « 6(v - g(d,s)) 

Also, the authentic distribution on    s    ,     {SJA} , is approximated by 

a discrete probability function   p(fL). 
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Figure 2.4; Multivarlate Model 
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Having made these two modeling approximations, we compute the 

modeled profit lottery: 

{vld.^} m Uiv  -   g(d,8)) p(8) 

We want to determine the discrepancy between this modeled profit 

lottery and the authentic profit lottery: 

{v|d,-4}   *   [ {v|d,8,4} {8|4} 
s 

We develop the methodology as In the previous sections, looking 

first at the Distribution Approximation and then at the Dependence 

Approximation. 

Let: 

n ■ the state variable vector whose distribution 

is  p(8) 

x = the state variable vector whose distribution 

is  (sU) 

We characterize the Distribution Approximation by the differences 

in the mean and variance of x and n : 

As ■ x - n 

v 
As 

V     V 
x - n 

Then, we expand both v ■ g(d,n) and v ■ g(d,x) about n and 

take the mean and variance (see Appendix A.6), using simplifying 

assumptions as before to eliminate third- and fourth-order terms (see 
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Appendix A.2). As shown in Appendix A.6, If the state variables are 

not mutually Independent, the resulting expressions are not useful 

because they require more Information than we have about the distri- 

butions on £.  So, assuming that the state variables are mutually 

Independent, we have: 

(2.27) 

(2.28) 

where 

(\  " V *    l8i(d.n)A;i + Is j;g11(d,^)A8i 
1 1 

+ %!  ^..(d.r^AijAs 
i j J 

v   v      r  , -v2 v 
(vx - V ^ i8!^^ A81 

-„     -2vvvvv-2v-2 + ^l  Z.8i:j(
d>IL) (x^.-^n ^As. +x..As1 ) 

+  III g1;j(d,n)glk(d,n) x1A«.A8k 
1 J k*j 

+ 2^ ^(d.^g (d,^) ^As, 

1 j 

g1(d,n) - j^—g(d,8) 
s - n 

s = n 8lj(d^ " 5ai6s 
g(d^ 

Equations  (2.27) and (2.28) yield the estimated correction 

terms for the effects of the Distribution Approximation. 

5.1 
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As A sp z±al  case, suppose that there are just two independent 

state variables s  and s.. Then th. correction terms from 
X a« 

(2.27) and (2.28) reduce to: 

(v - v ) v x   m g1(d,n)As] 

+ >Sgn(d,n)(As1+AS1
2) 

(2.29) + g2(d,n)As2 

-  v  >z 2* + isg22(d,n)(As2 +As2't) 

s 1 terms 

8 2 terms 

+ ^^(d.n)^^ crosb term 

v   v 
(v - v ) - 2 v 

g1(d,n) ASj^ 

■ oPvvv v-ol 
t läg11(d,n)<£ ^(x^) + 2x1As1^| 

+ 2g1(d,n)g11(d,n) Xj^^ 

81 
terms 

-.2 v 
+ g2(d,n) AB2 

+ *ig 22 (d.£)
2 /i v v     v _ 2 

2(x2+n2) + 2x2As2 

_ v 
+ 2g2(d,n)g22(d,n) x2As2 

82 
terms 

(Expression continued on next page) 
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(2.30) _2vv        vvv_2V o 
+ g12(d,n)   (x^ - n

1
n2+x

1^32 "^a^l ' 

-     - v _ _ 

. -     - v _ _ 
+ 2g22(d,n)g12(d,n) X2A8.A8 

-     _ v _ 
+ Zg^d.r^g^Cd.n) x1A82 

_ v _ 
+ 2g2(d,n)g12(d,n) x2ba1 

J 

cross 

terms 

Since the outcome variable Is still a scalar, we handle the 

Dependence Approximation axactly as in Section 2.3.  We characterize 

the approximation by a scalar random variable e  ; 

v « g(d,8) + e 

and assess the conditional mean and variance   <e I'd,8,4)   and 

<e|d,£,4).    Then,  the correction terms for the effects of the 

Dependence Approximation from    (2.14)    and    (2.15)     are: 

(2.31) (v   - v )  - ^ a       x' 
v        v v 

(2.32) (v   - v )  ■ e + 2cov(v ,e) 
ax x 

v 
where e , e and cov(vx,e) are calculated as in (2.16)  , 

(2.17) and (2.18). 

If we use the discrete distribution    p(8)    instead of the 
v 

authentic distribution   {sj^}     in the calculations of    e    ,    e    and 

cov(vx,e)    , we can determine correction terms for these calculations 

as in    (2.19).    The multivariate counterpart of    (2.19)    is: 
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(zx - in)    *   I £1(d.n)AS1 + H   I f11(d.n)A81 

1 J    lJ 1    3 

Finally,  the correction terms for the combined effects of 

both modeling approximations are: 

Av - (v - 
m " ^a-V + (v - v ) 

x   m 

V       V 
Av - (va- 

V 

m 

V     V - ^-v 
Effect of 

Dependence 

Approximation 

(2.31),(2,32) 

+ 
V     V 
(v - V ) 
x   m 

Effect of 

Distribution 

Approximation 

(2.27),(2.28) 
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CHAPTER 3 

AN EXAMPLE:  COMPETITIVE PRICING DECISION 

3.1 Introduction 

The decision making client plans to produce and sell a new home 

appliance during the coming year. He knows that he will have one major 

competitor and that, because the two competing appliances are virtually 

Identical In function, the share of the market each competitor captures 

will be determined primarily by the relative selling prices. The 

client Is not sure what price his competitor will set. 

Furthermore, he Is uncertain about the size of the total market. 

He believes, however, that It will depend strongly on the lower of the 

two selling prices and on the general economic conditions during the 

year. 

Finally, uncertainty also surrounds the manufacturing costs. The 

appliance contains an expensive raw material, but the client Is ui.certain 

how much the material will cost him and how much of the material Is 

required for each unit. 

The client's decision Is which selling price he should set for his 

appliance. Section 3.2 Is a description of the decision analysis of 

this problem and Section 3.3 Is an application of the methodology of 

Chapter 2 to determine how much effect the modeling approximations made 

In the analysis have on Its results. 
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3.2 Decision Analysis of the Problem 

Deterministic phase;  In the analysis of this problem, we first 

construct a deterministic model, as shown In Figure 3.1. The 

decision variable is the selling price p and the outcome variable 

is the profit s. Given p and the competitor's selling price y  , 

the client's share of the market z is determined by the Market Split 

Model: 

-k 

where k = ^n^0^ = 5.68 
ln(1.5) 

p < y 

See Figure 3.2 for a graph of the Market Split Model. 

The Demand Model determines the total market size n given the 

lower selling price x and an indicator of the general economic 

conditions f : 

n = is f 225 
(millions of units) 

See Figure 3.3 for a graph of the Demand Model. 

The client's total sales q is then: 

z n (millions of units) 

His total revenue r is: 

r - p q 
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Figure 3.1; Deterministic Model 
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Figure 3.2:    Market Split Model 

»    ^1 
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v. 
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.5      1.0 

i—i—i i | 

1.5 
i—i—i—I—i—i—i—i—|— 

2,0     2.5 (?) 
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Figure 3.3; Demand Model 
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The iLanufacturing cost per unit v depends on the cost h of 

the primary raw material, on the per unit usage factor w of that 

material, on other variable costs b and, because of a volume din- 

count on the primary raw material, on total sales q  : 

v = b + (.85 + .15eKqh) h w (dollars) 

where K = -In(81) = -4.4 

Then, given fixed costs t  , the total cost c isi 

c = t + v q 

Finally, profit    s    is simply: 

(millions of dollars) 

s = r - c (millions of dollars) 

Next, we assign low, nominal and hlgn values for the state vari- 

ables, as follows: 

State variable 

Competitor's price: 

Economic indicator: 

Material usage: 

Raw materia] cost: 

Other var. costs: 

Fixed costs: 

Low Nominal High 

250 y ($) 180 200 

f 0.75 1.00 1.25 

w 1.10 1.25 1.40 

h ($) 30 40 50 

b ($) 30 40 50 

t ($106) 7 9 11 

60 

■ ■■^- - - ---—---- ■ •  -.— - ■.---.   MUatbüAb£aÜB 



i f' ^^J^iVW^K^f^^^^sf^^ ■ JM-!iptMi,%B")Lijiw JUJ-" IWFIWJUitiomiiiji^mmmmftfKmmm^^^mmwmmmmB ■'!"Wf^«W^r^^r,^^^^^^:'!»F«WPHP"WP5^WW*^^iiWI^^ 

- ..■■.■ ,.. 

Using the deterministic model and the nominal values of the state 

Mriables, we compute the deterministic profit for each of several 

different values of the decision variable p. The results are shown 

on Figure 3.4 The highest deterministic profit of s = $6.97 million 

corresponds to the decision p ■ 170. 

He next calculate the deterministic sensitivity of the profit to 

each of the state variables by varying each state variable through its 

range while holding the others at their nominal values. The results of 

the deterministic sensitivity are shown in Table 3.1. We find that pro- 

fit is relatively insensitive to the material usage factor w and to 

the fixed costs t. Profit is highly sensitive to the economic indicator 

f  , although the deterministical ly optimal decision is not affected by 

f  , as it is by the competitor's price y , the raw material cost h 

and the other variable costs b. 

Probabilistic phase; Because deterministic profit is relatively 

Insensitive to changes in w and t  , we designate th^jn as non-aleatory 

and fix them at their nominal values. We designate ^e remaining state 

variables as aleatory variables and, in interviews with the client, 

assess the probability distribution for each aleatory variable, as shown 

in Figures 3.5 through 3.8. We then approximate each of these distri- 

butions by a discrete distribution as shown in the figures to allow 

assignment of probabilities to the decision tree. The competitor's price 

y is discretlzed into eight steps, the economic indicator f into five 

steps and the raw material cost h and the other variable costs b into 

three steps each. The resulting decision tree has 360 "tips" for each 
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Figure 3.4;    Determlnls» >. Results 

s - profit  ($nillllon) 

P - selling price 
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Table 3.1; Deterministic Sensitivity 

Sensitivity to y 

y P* s 

180 150 4.75 

190 160 5.94 

200 170 6.97 

210 170 7.96 

220 180 8.90 

230 190 9.70 

2A0 190 10.53 

250 200 11.25 

Sensitivity to f 

f P* s 

.75 170 2.86 

.90 170 5.32 

1.00 170 6.97 

1.10 170 8.62 

1.25 170 11.10 

Sensitivity to h 

h P* s 

30 160 9.22 

35 160 8.04 

40 170 6.97 

45 170 5.90 

50 170 4.84 

Sensitivity to w 

w P* 

170 

s 

1.10 7.93 

1.20 170 7.29 

1.25 170 6.97 

1.30 170 6.65 

1.40 170 6.01 

Sensitivity to b 

b P* s 

30 160 8.96 

35 170 7.91 

40 170 6.97 

45 170 6.03 

50 170 5.08 

Sensitivity to t 

t P* s 

7.0 170 8.97 

8.0 170 7.97 

9.0 170 6.97 

10.0 170 5.97 

11.0 170 4.97 
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Figure 3.5; Probability Dlgtrlbuti on on y 

y - competitor's price 

iyU) 

Authentic distr. 

.9- 

.8- 

.7- 

.6 

.5. 

ya = 201.10 

ya - 310.46 

.4 

.31 
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Figure 3.6; Probability Distribution on f 

f ■ economic indicator 

Discrete approx. 

f    - 1.017 n 

f    - 0.020 m 
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Figure 3.7;    Probability Distribution on    h 

h ■ raw iMterial cost 
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Figure a.v'; Probability Distribution on b 

b - other variable costs 

'{b|4} 
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decision alternative. 

Computations from the decision tree result in the modeled profit 

lottery {s|p,4}m  for each of several different values of the 

decision variable p.  We determine the relative desirability of each 

profit lottery by means of the utility function.  Interviews with the 

client reveal that his utility function on profit s is exponential 

with risk aversion coefficient .1 : 

u(8) = 1 - e *    for s in millions of dollars 

Using the utility function, we compute the expected utility and the 

certain equivalent of each profit lottery: 

^     8 m 

CE^p) = u~1(üp) = -10 ln(l - G ) 

Figure 3.9 is a graph of the certain equivalents.  The most preferred 

profit lottery, shown in Figure 3.10, corresponds to p = 160 and has 

a certain equivalent of CE - $6.47 million. 
m 

Informational phase; We calculate the probabilistic sensitivity 

of the certain equivalent to each aleatory variable by holding the 

variable to each of its values while allowing the other aleatory variables 

to remain probabilistic.  Table 3.2 chows the results of this probabi- 

listic sensitivity analysis. As in the deterministic sensitivity 

analysis, the optimal decision is not affected by thr economic indicator 

f. The optimal decision is most sensitive to the competitor's price y. 
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Figure 3.9; Probabilistic Results 

CE - certain equivalent ($mllllon) 

p - selling price 
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Figure 3.10;    Modeled Profit Lottery for    p = 160 

s = profit  ($iuillion) 

p = selling price 

'{8|p,4} 

1.0 
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Table 3.2;    Probabilistic Sensitivity 

Sensitivity to   y 

CE 

180 150 4.69 

190 160 5.89 

200 170 6.91 

210 170 7.87 

220 180 8.81 

230 190 9.61 

240 190 10.42 

250 200 11.13 

Sensitivity to    f 

CE 

.75 160 2.51 

.90 160 4.87 

1.00 160 6.44 

1.10 160 8.01 

1.23 160 10.37 

Sensitivity to h 

h P* CE 

30 160 8.68 

40 160 6.41 

50 170 4.32 

Sensitivity to b 

CE 

32 160 8.25 

40 160 6.63 

48 170 5.11 
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Using the results of the probabilistic sensitivity analysis, we 

compute the value of clairvoyance for each aleatory variable, as 

follows: 

Aleatory variable        Value of clairvoyance 

Competitor's price: y $378,000 

Economic indicator: f 0 

Raw material cost: h $ 46,000 

Or.her var. costs: b $ 31,000 

3.3 Effect of the Modeling Approxlaotions 

We can now consider what effect the modeling approximations made 

in the analysis have on its results. The fundamental question we ask 

here is how weir each of the profit lotteries computed in the analysis 

(e.g.. Figure 3.10) expresses the client's beliefs about the future 

consequences of his decision or, equivalently, how close the computed 

profit lottery is to the authentic profit lottery. 

The discrepancy betveen the computed and the autnentic profit 

lotteries arises from two types of modeling approximations:  1) the 

approximation of the probability distribution on each state variable by 

a discrete distribution (Distribution Approximation) and 2) the 

approximatior of the probabilistic relationship between variables by a 

deterministic relationship (Dependence Approximation). 

We can use the methodology developed in Chapter 2 to estimate the 

discrepancy in the mean and variance of the outcome variable, profit, 

caused by these approximations. 
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We characterize the Distribution Approximation for each state 

variable by the differences in the mean s^d variance of the variable 

using the two distributions, as shown in Figures 3.5 through 3.8. 

These correction terms for all of the state variables are shown in 

Table 3.3. 

We shall trace the effects of the various modeling approximations 

through the deterministic model shown in Figure 3.1, using the metho- 

dology sequentially for each submodel. Figure 3.11 shows the flow of 

this sequential use. 

Effect on market share z of the Distribution Approximation on competi- 

tor's price y ; 

From the Market Split Model, we have for p < y : 

1 - *W'k where k «■ J^ÜOI 
In(1.5) 

Taking derivatives with respect to y : 

'k\/yT<k+1) 
z ■<v> ■ « 

p 

For p " 160  , these derivatives, evaluated at y > 201«! are; 
m 

z'Cy ) ■ 38.54 x 10"4 
m 

z"(y ) - -1.28 x 10"4 
m 
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Authentic Modeled Dlffereiua 

Competitor1 s 

price 

y ■ 201.10 
a 

ya  = 313.46 

y = 201.10 m 

y = 293.80 m 

Ay = 0 

V 
Ay = 16.66 

Economic f = 1.003 a. ! = 1.017 
IB Af = -0.014 

indicator V 

f = 0.025 
a 

V 

f = 0.020 
m 

V 

Af = 0.005 

Raw material K = 39.29 
s S = 39.10 

m Ah = 0.19 
cost 

ha = 57.99 
V 

h    = 54.19 
m Ah = 3.80 

Other ba = 41.33 £1 £ = 40.48 Ab = 0.85 

variable 

costs ba = 32.89 b = 31.77 
m 

V 

Ab = 1.12 

Material wa - 1.25 w - 1.25 
m Aw = 0 

usage 

factor 

V 
w = 0.01 a w = 0 

m 

V 
Aw = 0.01 

Fixed 

costs 

t = 9.0 
3i 

t = 9.0 
m At = ' 

V V V 
t = 1.04 
a t = 0 

m At = 1.04 
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Figure 3.11:     Sequential Use of Methodology 

1 

Distribution 
Approximation: 
Competitor's 
price .- / 

Ay, Ay 

Distribution 
Approximation: 
Economic 
ind-    A?  AP  Af, Af 

Dependence 
Approximation: 
Market Split 
Model 

Effect on 
Market share 

Az, Az 

I Distribution 
Approximation: 
Raw material 

COSt  Ah. Ah 

Distribution 
Approximation.' 
Material 
usage .- 

Aw, Aw 

r 

Dependence 
Approximation'. 
Demand Model 

Effect on 
Total market 
size  _  v 

 An, An 

Cumulative 
effect on 
Total sales 

_  v 
Aq, Aq 

* ^ v v • 
Cumulative 
effect on 
Profit v 

As, As 

Distribution 
Approximation: 
Other var. 

C08t8 Ab. Ab 

Distribution 
Approximation: 
Fixed costs 

 At. flt  

Cumulative 
effect on 
Certain 
equivalent      CE 
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Then, noting that Ay = 0 , we have from Equations  (2.11) and 

(2.12) the correction terms for the effect on z of the Distribu- 

tion Approximation: 

(zx - ij  = b z"(ym) Ay 

V        V V 
Substituting from Table 3.i the values of y  , y  and AV 

am 

(zx - zm) - ( 8.33) z"(ym) 

V    V 

m 
(zx " V  =  (16-66) z,(ym) + (5033.5) z'^y ) 

For p = 160 , these correction terms are: 

(zv " zm) = -.0011 x   m 

U    - z)    =    3.30 x 10 ^ x   m 

Effect on market share z of the Dependence Approximation in the 

Market Split Model; 

The model asserts that the spilt of th«; market is determined 

solely by the two selling prices. The client believes, however, that 

the model does not fully represent his uncertainty about the market 

split.  For Instance, he believes that other factors, such as adver- 

tising and brand loyrity may also influence the market split, although 

to a lesser extent than the relative prices. 
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We characterize this Dependence Approximation by the random 

variable e  : 

z = 2 + e 
a   x   z 

The client believes that the model is unbiased but that his residual 

uncertainty has a standard deviation of about 8% of the value of z 

given by the model for z < »s and a symmetric amount for z > Js. 

Therefore, he assesses: 

<eJP.z .4>  =  0 z   x 

Since the conditional mean is zero,    iz = 0    and cov(z  ,e ) = 0. 
v 

Then,  calculating    e      for    z > 4 

z ' x'  z' 
for    ?.  > ^  • 

z 
v 
e 

z I 
'<e2ip,zx,4>  {zx!p,4} 
z 

*   ( Bo (1 " ZX>2^XIP^> 
z 

1 — 
150   (1 ~ 2z      +    z 2) 

X X   ' 

1 - ^ _   9 
-r^r   (1   -   2z     +  z     +  z      ) 
150 x x        x  y 

From    (2.14)    and    (2.15)     ,  the correction terms for the effect on 

z    of the Dependence Approxiaation are: 

Cza " O    -   £ -    o ax z 
v v 

'■Za ~ Zx)    ,=    e^ + 2cov(z   »e )    =    e z 
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For p - 160 , the modeled mean and variance of z are: 

z  - .847 m 

v 
z m 38.45 x 10 

-4 

So, for p = 160  : 

v 
z 

z  + (z - zj - .846 m     c   m 

v     v   v _/ 
*  + (z - zJ    " Al,75 x 10 H m m 

Then, the correction terms for the efilect on z of the Dependence 

Approxliiatior. are for p - 160 : 

(z   z  ) a - x' 

^a " Vzx> - BÖ (1 " 2ix + Vzx + *x2) = 1M  x 10'4 

Combined effect on market share z of both approximations 

The correction terms for the combined effect on z of both model- 

ing approximations are: 

Az - (z - i ) + (z - z ) 
a   x      x   m 

v   v   w      v   v 
Az «• (z - z ) + (z - z ) a   x      :c   m' 

For p ■ 160  , these correction terms are: 

Az - -.0011     + 0 

Az - 3.30 x 10"4 + 1.86 x lO-4 
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Then, the estimated authentic mean and variance of z for p ■ 160 

are: 

z = z + Az = -8^6 am 

V     V       V _A 
ZQ - z + Az = 43.61 x 10 a   m 

We see that, for p ■ 160 , the analysi3 overstates the mean of z 

by about 0.1% and understates the variance of z by about 12% and 

the sta. ird deviation by about 6%. 

Effect on market size n of the Distribution Approximation on the 

economic indicator f  ; 

From the Demand Model, we have: 

. f       ^ 225 
n = »jf e 

Taking derivatives with respect to f : 

n.(f) . he"^ 

n"(f> =  0 

For p - 160 , x = 160 so: 

n'(f) = .246    for all f 

Noting that n"(f) - 0 , we have the correction terms for the effect 

on n of the Distribution Approximation from (2.11) and (2.12)  : 
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I 

(n - n ) - n' (f ) Af 

y       v - ? v 

(nx " V  " n ^J  Af x   iu        m 

Substituting from Table 3.3 the values of  Af and Af  : 

(nx-nm) - (-0.014) n« (y 

^v - "J " (0.005) n'd )2 

For p - 160 , theje correction terms are: 

K, " O - -.0035 x   m 

(n - n ) = 3.24 x 10'4 x   m 

Effect on market size n of the Dependence Approximation in the 

Demand Model; 

The Demand Model claims that only the lower celling price and the 

general economic conditions affect the size of the total market. As 

with the Market Split Model, the client believes that other factors may 

also influence the total market size and that, therefore, the model 

understates his uncertainty about the market. 

We characterize tf.is Dependence Approximation by the random 

variable    e      : n 

n   + e x        n 
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The client assesses his residual uncertainty as: 

<ep!x,f,4>  = 0 

V<e |x,f,4>  = (1.5 x 10"5)(x - 120) f2 

Again, since the conditional mean Is zero, e = 0 and 
n 

v 
cov(n  ,e ) = 0.    Then,   calculating    e      : x' n e      n 

v<en|x,t,y>{fU} 

(1.5 x 10"5)   (x - 120) f2{f|.i} 

=    (1.5 x  lO""5)   (x - 120)   f 2 

»    (1.5 x 10"5)   (x - 120) (f    + f 2) 
a       a 

Substituting frcm Table 3.3 the values of f  and f  : a a 

e    =    (1.55 x 10"5)   (x - 120) 

The correction terms  for the effect on    n   of the Dependence Approxi- 

mation from    (2.14)     and    (2.15)    are: 

(n   - n )  = e a       x n 

v        v v v 
(n   - n )  = e    + 2cov(n  ,e ) = e a       x n x    n 

For    p - 160    ,    these correction terms are: 

(n   - n )  = 0 a       x 

v V -ii 
(n    - n )  = 6.19 x 10 a       x' 
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Combined effect on market size    n    of both approximations; 

The correction tenu for the combined effect on    n    of both model- 

ing approximations are: 

An    -    (n    -  n ) + (n    - n ) a        x        v x        m 

v v v v v 
An   ■    (n    - n ) + (n    - n ) a        x x        nr 

For p ■ 160 , these correction terms are; 

An - -.0035    + 0 -.0035 

An - 3.24 x 10"4 + 6.19 x lO-4 = 9.43 x 10"A 

The m ^.aled mean and variance of    n    for    p ■ 160 are: 

n   - .250 m 

n   - U.95 x 10"4 

m 

So,  the estimated authentic mean and variance for    p ■ 160 are: 

n   » n    + An    -    .246 a       m 

v v V _A 
n    - n    + An    -    21.38 x 10 H 

a       m 

We see that, for p ■ 160, the analysis overstates the mean of n by 

about 1.4X and understates the variance ot n by about 44% and the 

standard deviation by about 25%. 
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Cumulative effect of the modeling approximations on total sales q ; 

Now, considering the output variables of the Market Split and 

Demand Models, market share z and total market size n , as Input 

variables to the next submodel, we can determine the cumulative effect 

on total sales q of tha various modeling approximations. These 

v 
approximations are characterized by the correction terms  A z , A z , 
-      v 

An and An that we have just computed. 

From the model, we have: 

q = z n 

This is an exact relationship, so there is no Dependence Approximation 

for this submodel; we need worry about only the Distribution Approxi- 

mation on input variables z and n. Taking partial derivatives: 

o (z,n) - n 
z qzz(z,n) - 0 

qn(z,n) = z q (z,n) - 0 nn 

For p ■ 160 : 

q,(z n ) = .250 
z m> m 

VvV = •847 

qzn(z,n) - 1 

Noting that qzz and qnn are zero, we have the correction terms for the 

effect on q of tha Distribution Approximation from (2.29) and (2.30) : 
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(q - q_) ■ q (i ,n )Az + q (z ,n )An 

+ »jq  (z ,n )AzAn zn m m 

v v __2V' --2V 

(q - <!_) - q (z ,n ) Az + q (z ,n ) An VMx   Tn   Mz m m      n m m 

_ _ 2VV  vv v -2y -2 
+ q  (z ,n ) (z n -z n +z An -hi Az ) 

zn mm   a a m m a    a 

+ 2q (z ,n )q  (z ,n ) z An Mz m m ^zn mm  a 

_ _     _ _  v  _ 
+ 2q (z ,ri )q  (z ,n ) n Az n m m    zn mm  a 

Since there Is no Dependence Approximation: 

Ai - (qa - qx) + (qx - \) *  (\  " V 

V     V v    v      v    v 
Aq -  (qa - qx) + (qx " \)  '  \  " \) 

For p ■ 160  , these correction terms are; 

Aq - -.0032 

Aq - 7.02 x 10"4 
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The modeled mean ana variance of q for p - 160 are: 

Sn " '212 

«IJJJ - 11.01 x 10 -4 

So. the estimated authentic mean and variance oS  total sales q 

for p « 160 are: 

qa " \   +   ^    =    -209 

qa " q
m 

+ A(J = 18.03 x 10 -4 

We see that, for p . 160  . the analysis overstates the mean of 

q by about 1.5* and understates the variance of q by about: 

39% and the standard deviation by about 22%. 
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Cumulative effect of modeling approximations on profit 

In the model, profit s is given as the following function of 

selling price p , total sales q  , fixed costs t , other variable 

costs b , raw material cost h and material usage factor w : 

s=pq-t-q(b+ .85hw + .15hw eKqw) 

= q (p - b - .85hw - .15hw eKqW) - ,. 

where K = -In(81) 

This is an exact relationship, so there is no Dependence Approximation. 

Taking partial derivatives: 

sb = "^ 

sh = -wq(.85 + .15 eKqw) 

8W = -hw(.85 + .15(1 + Kq) aKqw) 

sq = P - b - hw(.85 + .15(1 + Kqw) eKqW) 

st « -1 

8bb = 0 

Shh" 0 

8^, = -.15 Khq2 (1 + Kq) eKqW 

sqq = -.15 Khw2 (2 + Kqw) eKow 

8tt = 0 

Sbh= 0 

8.-0 bw 

8bq -  -1 
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St" 0 

8
hw ' -q(-85 + .15(1 + Kqw) eKqW) 

8,. - -w(.85 + .15(1 + Kqw) eKqW) 
hq 

V 0 

8  - -h(.85 + .15(1 + 2Kq + Kqw + K2q2w) eKqW) wq 

wt 

8qt"  0 

For notational compactness, let: 

s(.) ■ s(p,q_ w h b t ) «>\ /     VK,Mm» m» m» m» m7 

Then, for p = 160 , the partial derivatives evaluated at the 

modeled mean are: 

S(.) - -.212 

V.) ■ -.238 

.,(.) ■ -7.072 

.,<.) . 78.353 

»»<•' - .025 

s      (.)   - 
11 

10.500 

Bh.<-' ■ -.178 

v<-> ■ -1.053 

v-' ■ -31.509 
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Noting that Ay , Aw and At are all zero, we have the correction 

terms for the effect on s of the Distribution Approximation from 

(2.27) and (2.28)  : 

<*v - O    "    M-)^ + MOAh + s  (.)Ai x        m D n q 

+ h Suu(.)Aw + H 8nn(.)(Aq +Aq 2) ww qq 

+ sbq(.)AbAi + 8hq(.)AhAq 

vv 2V 2* 2V 
x        m D n w 

2 v 2 v       i 2 V2 
+ S   (.TAq + ■ (.) At + ^(•)   Av/ q t ww 

2 v  2 v  -,      v     _2 
+    h a     (.r(q/-q3- 2q AqZ) qq a    ^m a 

(2,
v  2^2.^  ^2, 

qq * 

2VV VV V 7V_2 
+ 8.    (.)   (b q    - b q^ + b Aq'!- q Ab  ) bq a a       mTn        a Ma 

ovv        vv        v„2      v      2 
+ s.    (.)   (h q    - h q    + h Aq    + q Ah  ) 

hq aa        mm        a a 

2 v -2    v 2 v _2    v 
+ 8hw(.r(ha + Ah^)Aw + 8wq(.r(qa + AqZ)Aw 

V  v     _  _ 
+ 28bq(-)8hq(-)qaAbAh + 8qq(-)8bq(-)qaAqAb 

* ^h^W'^a^ + 28w(-)8hw(^A"AS 

+ 28„<-)8q„<->A^ + 28
q(->

8
qq<->Vq 

+ 28   (.)8     (.)q Ab + 2s   (.)8, (.)q Ah 
q        bq        a q        qn        a 
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because there is no Dependence Approximation: 

As -  (s    - i ) +  (s    -  s )     -     (a    - s ) ax x        m x       m 

V V v v v ▼ T 

A8   -   (8a   -   8x)   ♦   (8x   -   Sj      -       (8x   -   8^ 

For p ■ 160 , these correction terms are: 

As = -.472 

As - 5.797 

The modeled mean and variance of s for p ■ 160 are; 

m 

v 
s ■ 

7.014 

11.317 

So, the estimated authentic mean and variance of profit s for 

p = 160 are: 

s      -    s    + As 
a m 

6.542 

V V V 
s      ■•+&•■    17.xl4 a m 

We see that, for p = 160 , the analysis overstates the expected 

profit by about 7.2% and understates the variance by about 34% and 

the standard deviation by about 19%. 

Cumulative effect of the modeling approximations on the certain equ'.va- 

lent; 

By treating the utility function as a submodel, we can determine 
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1 

the cumulative effect of all the modeling approximations on the certain 

equlvaleit. 

The ul:lllty function Is 

u(s) - 1 - e 
-1 > 

Taking derivatives: 

•.1 
u'(s) - .1 e * 

'. s 
u"(s) - -.01 e 

-.1 s 

For p ■ 160 , these derivatives evaluated at s  are: 
m 

u'Cs ) - .0496 ■ 

u"(s ) - -4.96 x 10 
m 

-3 

The correction term for the effect on expected utility of the Distri- 

bution Approximation from (2.11) Is; 

AÜ - u,(8jAä+ u"(Z )   (As +A82) m 

For    p - 160    ,  this correction tsrm Is: 

Au    -    -.0'Jfi3 

The modeled expected utility for p - 160 Is: 

u, - .4764 
m 

So the estimated authentic expected utility for p - 160 Is; 

u  ■ u + Au 
a    m 

.4381 
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This corresponds to a certain equivalent of: 

CE u'1 (üj 5.76 

The modeled certain equivalent for p - 160 Is: 

CE  - 6.A7 
m 

We see that, for p ■ 160 , the modeling approximations have caused 

the analysis to overstate the certain equivalent by about:  $710,000 

or about 12%. 

By repeating this procedure for different values of p  , we 

find the following: 

Modeled     cst. authentic    Overstatement 

p CE ■ CEa by analysis 

150 5.87 5.20 13Z 

160 6.47 5.76 12% 

170 6.40 5.67 13* 

After taking Into account the effect of the modeling approximations, we 

see that the optimal decision Is still p - 160. 

Effect of the modeling approximations on the value of clairvoyance: 

If we apply the methodology to the probabilistic sensitivity 

analysis, we can estimate the effect of the modeling approximations on 

the value of clairvoyance. We find as a result that the analysis 

sl'.ghtly overstates the value of clairvoyance: 
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Variable 

Competitor's price: y 

Economic indicator: f 

Raw material cost: h 

Other var. costs: b 

Value of Clairvoyance 

Modeled Est. authentic 

$378,000 $327,000 

C 0 

$ 46,000 $ 43,000 

$ 31,000 $ 25,000 

Summary 

We see that the methodology presented in Chapter 2 can be used to 

determine the effect on the profit lottery and on the certain equivalent 

of the modeling approximations made in the analysis. The methodology 

thus provides us with an indication of the adeqaacy of the modeling In a 

decision analysis. 

In this example, the modeling appears to be quite adequate, for the 

methodology indicates that the modeling approximations do not affect the 

optimal decision. 
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CH/J>TER 4 

STOCHASTIC MODELS 

A.l  Introduction 

In the preceding chapters, we have dealt solely with deter- 

ministic models  -  tho8e modeA8 that yield a ^^ ^^ ^ 

the outcome variable for fixed values of the state and decision 

variables.  We can now look a. su.hastlc models  -  those models 

that yield a probability dls-. .hutlon on the outcome variable for 

fixed values of tie state at*  aaclslon variables. 

We use stochastic models to represent situations In which 

we are uncertain about the dependence of th. outcome variable on 

the state variables but cannot conveniently attribute this uncer- 

tainty to additional .täte variables.  Indeed. In these situations, 

we often view the dependence relationship as bein, inherently 

uncertain.  Generally, we possess some d.ata (e.g., long-run 

frequencies) lout the uncertain relationship to help us define the 

stochastic model. 

For example, we use the Bernoulli stochastic model to express 

our uncertainty about the number of heads obtained in n tosses of 

a coin because we find It easier to think of the outcome of a coin 

toss as being inherently uncertain than ro think of it as being 

dependent on such extraneous factors as rotational forces and 

surface characteristics. 
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In tlAs chapter, we shall extend the methodology developed 

in Chaptet 2 foi deterministic models to stochastic models.  Tht 

methodology is us.ful only for relatively simple stochastic 

models, such as Bernoulli or small Markov models. 

A.2 Extension of the Methodology 

In a decision analysis, we ideally want the -uthentlc profit 

lottery: 

{v|d,-S} f {v|d,s,4}{s|4} 

Suppose,  however,  that we use a stochastic model to compute the 

profit xottery,  as follows: 

Md,4) m I   {v|d,8,4}      p(8) m 

where the stochastic model is specified by the conditional proba- 

bility distribution  {v|dt8,4}m.  We see that the discriparcy 

between the modeled and authentic profit lotteries is due to the 

two modeling approximations: 

1. The approximation of the probability distribution on the 

state variable vector B by the discrete probability function p 

(Distribution Approximation): 

(4.1) P(8) {•Ul 

9A 
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2.  The approximation of the conditional probability 

distribution on v given d and s by the stochastic »nodel 

(Dependence Approximation): 

(4.2) {vld.s,*} m 
{vld.S.A} 

We want to quantitatively characterize these modeling approxi- 

mations and determine their effect on the profit lottery. 

More specifically, letting v  denote the authentic out- 

come variable and v  denote the outcome variable of the 

stochastic model, we want to determine the correction terms: 

Av (v - v ) 
a   y' 

V V     V 
Av  -  (va - vy) 

Let us first define: 

g(d,s)      *       <v   ld,s,A> 

f(d,8)       a      V<vy|d,8,4> 

Then, we can write: 

(4.3)     v   -  g(d,s) + e 

"S 

J 
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vrtiere    c    is a random variable whose conditional mean and 

variance are: 

<e|d,8,4> <Vy|d,8,4>      -      g(d,8)      -      0 

Vyld.s.A) f(d,s) 

Then, using gCd^) as a refere ice deterministic model, 

we can write the Dependence Approximition in (4.2) aa two 

separate approximations: 

(v ld.8,4}  = 5(v - g(d,s))  « {vld.s.A} 
y      m —       a  - 

We characterize the first of these approximations by the random 

variable e as in (A.3) above . nd the second, as in Chapter 

2, by the random variable e : 

(4.4) g(d,8) + e 

where the conditional mean <c]j,£,4>  and variance  v<e|d,£,4) 

are directly assessed. 

Next, employing the following notation from Chapter 2: 

n - the state variable vector whose distribution is p(8) 

x - the state variable vector whose distribution is {sU] 
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we characterize the Distribution Approximation in (4.1) by 

the correction terms: 

As x -  n 

v 
As 

V       V 
x -  n 

We use four different subscripts for the outcome variable 

(see Figure 4.1): 

v " the outcome variable of the stochastic model 
y 

v ■ the outcome variable of the reference 
m 

deterministic model 

v ■ the outcome variable corrected for the 
x 

Distribution Approximation 

v ■ the authentic outcotno variable 

Then, we can write: 

v - g(d,n) 
m 

vx - g(d,x) 

(4.5)     v - g('Sn) + e - vm + P 

(4.6)     va - g(d,x) 
+ * - -'x + e 

Taking the mean and variance of (4.5), we have: 
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na^LA^ Definition of ^.^^ ^Unm   y^^^ 

vy - Outcome variable of stochastic model 

{T |4,4) - I  {v|d,s.4} p(8) 
m r —' 

A 

Correction for: 
Md.s,^ = 6(v _ t(d(l)) 

vm - Outcome variable of reference 

deterministic model 

{vJd'4>     -     I   6(v - g(d,8))   p(8) 

Correction for: 

P(8)  ■  (sl-i} 

1  
vx - Outcome variable corrected for 

Distribution Approximation 

frj«.*) - f 6(v-8(d.s)){s|4} 
• a 

Correction for: 

H* -  gCd.s))  .  {v|d,8,4} 

1  
va - Authentic outcome variable 

^Jd.4}      -      [   {v|d.8^}{s|4} 
's 
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v    +   e 

V V V 

v     -    v     +   e   +   2cov(v ,e) y m m 

But, because      <e|d,8,4)   -   0    ,    e - 0    and   cov(v ,e) - 0. 
Dl 

So. 

(4.7) 

(4.8) 

where: 

v 
v 

V V 

v     +   e ■ 

V 
e -   Iv<eid,8,3>   p(8) 

(4.9) 

l  f(d,8)   p(8) 

Next,  taking the mean and variance of    (4.6),   we have: 

(4.10) v     -   v     +   e a x 

V V V 
(4.11) v     -   v     +   e   +    2cov(v ,e) ax x    ' 
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where (see Appendix A.4) 

(4.12)    e  - 

(4.13)    e 

[ <e|d,a,A>{s| i) 

(4.14)    cov(v ,e) 

I  (^10,8,4) + <e|d,8.4>2){8|4} 

-  [ g(d,8)<e|d,8,A>{8|Ä} 

-2 
- e 

- v e x 

Then,  subtracting    (4.7)    from    (4.9)    and    (4.8)    from 

(4.10), we have: 

(4.15) Av    -    (v   - O    ■    (v    - v ) + e a       y x        m 

v v        v v        v v      v 
(4.16) Av    -    (v    - v )    -    (v    - v ) + (e - e) + 2cov(v ,e) ay xm x 

v    _    v 
where e , e  , e and cov(v ,e) are calculated as in (4.9) 

and (4.12) through (4.14) above and where (v - v ) and 
x   m 

v   v 
(v - v ) are the correction terms for the effect of the Dlstrl- 
x   m 

butlon Approximation, given by (2.11) and (2.12) for the single 

state variable case and by (2.27) and (2.28)  for the multl- 

varlate case  The equations  (4.15) and (4.16) above yield 

the desired correction terms for the outcome variable. 

As a special case, suppose that the stochastic model fully 

expresses our uncertainty about the dependence relationship: 

{Vy|d,8,4}m  -  {Va|d,8,4} 
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Then, 

<vJd.s.A)       -       <v   |d,8,4> 

so. 

<e|d,8,4> 

and,   therefore. 

<v Jd.s^)    -    g(d,8)       -    0 ■ 

0        and        cov(v  .e) 

Mao, 

v<eld,8,4>      -     V<vy|d.8,4> f(d.8) 

and, therefore, from (A.13), 

(4.17) e -  I  f(d,8){8|4} 

Then, from (4.9) and (4.17), 

( e - ?) -  [ f(d,s){s|4} - J f(d,_s) p(8) 

From (2.33), we see that this can be estimated as: 

v  v 
(e - e) 

(4.18) 

l  f1(dti>Aäi + >s £ f^d.n)*^ 

^ I    I  f^(d,n)Ai As, 
1 J X3     *   3 
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So, for this special case, the correction terms in (A. 15) 

and (4.16) become: 

(4.19) 

(4.20) 

Av 

v 
Av 

(Vx - Vtn) x   m 

V    V      V   V 
(v -▼) + <•- e) 
x   m 

4.3 Example^ A Gsw 

Consider the following game: We draw one ball from an urn 

containing 25 balls that are numbered consecutively from 1 to 

25.   Letting n be the number on the drawn ball, we then flip 

a thumbtack n times. Finally, letting r be the number of "heads" 

(point up) obtained, we receive a prize of v dollars, where v - r2. 

Should we pay $25 to play this game? Our utility function on 

dollars is exponential with risk aversion coefficient  Y - .04 : 

u(v) 1 - e 
-.04v 

We use the Bernoulli stochastic model to analyze this game. 

(See Figure 4.2) The state variables are n , the number of flips, 

and p , the long-run frequency of "heads" in many flips of the 

thumbtack. Given fixed values of these state variables, the 

Bernoulli model yields the following probability distribution on 

the number of "heads" r ; 

{rl^p,^  -  (")(p)r(l-p) n-r 
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Figure 4.2;    Analysis of rh* n^T 

! 

n 

1 
P 

t 

T V 
Bernoulli 

v-r2 
Utility 

nc aei 
function 

u 

n ■ number on drawn ball 

P - long-run frequency of heads 

r - number of heads in n tosses 

v - monetary payoff 

u - utility 
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For the purposes of analysis, we use the following Jlsrributlons 

on the state variables: 

{n|4} m 

2r     n - 1,2,...25 

0        otherwise 

{P^}, m «SCP - P0)      where p0 -  .5 

Using a computer, we calculate the resulting probability 

distribution on r : 

{r|4} I I  {r|n,p,4} {n|4}  {p^} 
ai   in    n 

n p 

" ^H'r)^' 

Next, we calculate the corresponding distribution on v : 

H*),  - I  Hr,AMr|4>_ 
r 

- I 6(v- r2){r|4} 

Finally, we compute the expected utility and the certain equivalent 

of the game: 

". - I H*>« u(v> 
V 

CE - u'1(a ) m       m 
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We find that: 

r 
m 

s 6.50 
V 

r 
i 

V 
m - 58.50 V 

i 

u 
m 

■ 0.6469 

CE « 26.03 

16.25 

3586.05 

m 

The analysis indicates that we should be willing to pay up to 

$26.03 to play this game. 

We can now ask: What modeling approximations have we made 

in this analysis and what effect do they h ve on its results? 

In this case, there is Just one approximation — the use of a 

fixed value p. - .5 for the long-run fraction of "heads" 

instead of a probability distribution on p.  Suppose that we 

assess the following mean and variance for p : 

v 
P 

v0 

.01 

.5 

Then, we characterize the approximation by the correction terms: 

Ap 

v 
Ap .01 
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We define as the reference deterministic model the conditional 

oean of the Bernoulli .1B  le^t'ng: 

g(n,p)    -    <r|n,p,4>     -      n p 

f(n,p)    -   v<r|n,p,4>     -     n p  (1 - p) 

Taking partial derivatives of g(n,p) : 

8n " p 8
nn  '  0 nn 

8P " n 
PP 

8np " l 

Then, noting that AÜ . A^ and A^ are all zero, we have from 

(2.27) and (2.28) : 

(r - r ) 
x  m 

v   v 
(r - r ) 
x   m 8p(n,p) Ap + g^Cn.p)^?^- p^n) 

_2 v  v v 
n Ap + nAp 

-2      v v 
(iT + n)Ap 

Because the Bernoulli model fully expresses our uncertainty 

about the number of "heads" given   n    and    p    . „e can use the 

results of Section   4.2    for .he special case.    Taking partial 

derivatives of    f(n,p)    with respect to    p  : 
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f p    -    n - 2np 

PP 

Then,  from    (4.18), we have: 

v      v 
(e - c) ^pp'^'P^P 

- v 
-n/ip 

Sc, from (4.19) and (4.20), we have: 

Ar  - 

v 
Ar 

(r - r ) 
x   m 

v   v    v  v 
(rx - V + (« - e) 

-  0 

-2  v  _ v 
(n + n - n)Ap 

Substituting, we find that: 

,ir 

v 
Ar 

0 

2.08 
v 
r 

6.50 

18.33 

So, the fixation of p has no effect on the expected value of r 

but causes the analysis to understate its variance by about 11%. 

We can now determine the effect of the approximation on our 

winnings v. Taking derivatives of v - r2 : 

2r 
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Then, noting that Ar - 0 , we have from (2.11)  and (:,.12): 

Av 

•i 
Av 

>sv"(r )Ar 
n 

V 
Ar 

.    -      1   * _'tVV     V 
v1 (rJ'-Ar + VCr Y  Ar(r f r ) 

o mam 

_ 2 v    v v   v 
4r Ar + 2Ar(2r +Ar) ■ m 

Substituting, we find that: 

Av 

v 
Av 

2.08 

495.37 v 

60.58 

4081.42 

We see that the fixation of p causes the analysis to understate 

both the expected value and the variance of v by about 3.A;.' and 

12X , respectively. 

Finally, we can detemfnc the effect of the approximation on 

the expected utility and the ctrtain equivalent. Taking derivatives 

of the utility function: 

u(v)      -      1 - e--04v 

-.04v .04e 

-.0016 i -.04v 
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Then,  fmm    (2.26), we have; 

AG      -      u'tv )Av + V(vJ(Av+Av2) m m 

.04 e"'0Avin (Av -  .02(Av +Av2)) 

Substituting, we find that: 

Au -0.0305 u  -  0.61M 
3 

And: 

CE  -  -25 ln(l - u ) - $23.96 
a a 

So, we see that the fixation of p causes the analysis to over- 

state the certain equivalent by about 8.6Z and that we should 

not be willing to pay $25 to play the gaot. 

It is interesting to see how the misstatement of the certain 

equivalent caused by the fixation of p varies with the degree of 

our risk aversion. Figure 4.3 showp the percentage misstatement 

of the certain equivalent as a function of our risk aversion 

coefficient Y for the game played with 5 , 15 and 25 balls 

in the urn. Note that the misstatement of the certain equivalent 

may be either positive or negative, depending on our risk preference, 

and that the degree of misstatement does not necessarily vary mono- 

tonically with the risk aversion coefficient. 
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Figure 4.3;     Risk Sensitivity nf Mlsstate^ent nf    r.v 

e 

.04-1 

Y 

N 

fractional mlsstatement of certain equivalent 

due tc fixation of p - ACE/CE 
a 

risk aversion coefficient 

number of balls In the urn 
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CONCLUSION 

As we have seen,  the role of modeling in decision analysis 

is to help us obtain the authentic profit lottery by simplxfying 

our assessment task.    We think of the models in decision analysis, 

then, as subjective expressions of our uncertain understanding of 

the world rather than as objective descriptions of reality. 

We can now answer the questions about modeling thi?t we 

raised in the Introduction. 

First, what is "goodness" in a model and can we quantify it? 

Because we tnink of a model as an approximate expression of our 

uncertainty and not at  a description of the real-world,  an index 

of realism would not provide a meaningful measure of goodness. 

Rather,  the measure of goodness that we want is how well the model 

represents our uncertainty about the (»ependence relationship between 

outcome and state variables.    We can quantify this measure of good- 

ness with the random variable    e  : 

v    -    g(d,8) + e 

Then, we csn use the methodology of Chapter 2 to show how the good- 

ness of the model affects the results of the decision analysis by 

determining its contribution to the correction terms on the profit 

v 
lottery äV and Av. 

Ill 
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Next, how should we choose airong alternative models? Using 

the measure of goodness defined above, we should choose among 

competing models according to how "close" they get us to the 

authentic profit lottery. When our state of information about 

the decision environment includes a large amount of data, we can 

use a probability-space of models to help us choose among several 

alternative model forms, being careful that we meaningfully 

interpret the probability assigned to each model in the space. 

(See Section 1.6.) 

Finally, how should we decide when to do more modeling? The 

reason that we use modeling in decision analysis at all is that we 

Judge the directly assessed profit lottery to be so "far" from the 

authentic profit lottery that it is worthwhile spending the time 

and effort to reduce our secondary uncertainty. Likewise, our 

decision to do more modeling should depend on whether or not it 

is worth :he additional effort to s^t evp.n "closer" to the authentic 

profit lottery. 

We use the concept of the value of perfect information to help 

us ledde when to collect more data. The analogous concept that we 

need to help us decide when to do more modeling is not the value of 

perfect modeling but rather the value of obtaining the authentic 

profit lottery. This value is the most we should pay to completely 

resolve our secondary uncertainty through further modeling. Unfor- 

tunately, it is exceedingly difficult to exercise this concept, since 
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to do so, we must assess the Joint distribution on the authentic 

certain equivalents for all decision alternatives. 

We can, however, get an Indication of the value of additional 

modeling by using the methodology of Chapter 2 to estimate the 

difference between the modeled and authentic profit lotteries. The 

greater the difference, the greater the presumed value of additional 

modeling. Furthermore, we can use the methodology to Indicate where 

more modeling would be most effective by showing the contribution of 

each part of the model to the discrepancy in the profit lotteries. 
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APPENDICES 

Appendix A.l;  Effect of the Distribution Approximation 

This appendix supplements Section 2.2, pp. 39-40. 

For notatlonal ease, let: 

g(.) " g(d,n) 

m    3 
s -  (s - s)   ,  third central moment 

-.4 
•■(•-■)       ,  fourth central moment 

We characterize the Distribution Approximation by: 

As    =    x    -    n 

v v v 
As    -    x    -    n 

We expand ^ - g(d,n)  about n : 

(a.l)    vm - g(.) + g'(.) (n - n) + V(.) (B - n)
2 

Taking the mean: 

(a.2)    vm - g(.) + Jsg-'C) n m 

Squaring    (a.l)    and taking the mean 

2 . .2 
ffi      ■    1(0      + g^.)2  (n - n)2 +JSg"(.)2   („ - n)4 

+ 2g(.)g'(.)   (n - n) + g(.)g"(.)   (n - n)2 

+ l^.)!"(.)   (n - n)3 
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(a.3) v^ -    lO^t'CO^+^-C.)2 n 

+ g(.)g"(.)n + g'^g'^O n 

Squaring  (a.2)   : 

(••*)       vffi
2   -•(.)2+H8't(.)2i2 + i(.)t"(.)5 

Subtracting (a.4)    from    (a.3)   : 

(«•5) I,    -    g^.^n+W.)2  (n-n2)+g'(,)g"(.)  ^ 

To simplify this expression, we assume the following (see Appendi> 

A.2) : 

n - 0 

n " 3 n 
V2 

Then    (a.5)    becomes: 
v 

(a.6) vm    -    g'(.)2 X + VC)2 n2 

Similarly, we expand    v    - g(d,x)    about    n  : 

(a.7) vx    «    g(.) + gV.)   (x - n) + Jäg"(.)   (x - n) -v2 

Taking the mean: 

(a.8) vx - g(.) + g'(.)   (x - n) + %*(.)   (x - n) -v2 
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Squaring  (a,7) and taking the mean: 

(a.9) 

gt.^ + gV.)2 (x-n)2 + WC)2 (x-n)4 

- 2 
+ 2g(.)g'(.) (x " n) + |C.)fM(.) (« - n) 

+g,(.)g"(.) (x - n)3 

-.2 -v4 2 ■ |(.) +t,(.) (x-Sr + ««tM(.) (x-n) 

-.2 
+ 2g(.)g'(.,l (x - n) + g(.)g"(.) (x - n) 

+ g'Og^.) (x - n)3 

Squaring  (a,8) : 

g(.)Z + I^O* (x - nr + hgu(.r  (x - n) 
-2     _2 .  ...2 .-  -.2 2 .   -.2 

-.2 
+ 2g(.)g'(.) (x - n) + g(.)g"(.) (x - n) 

-x2 
+ tti»)%ni')   (x - n) (x - n) 

Subtracting (a. 10) from (a.^ 

(a.11)   vx «  g' (.)
2| (x - n)2 - (x - n)2] 

r j2 "1 
(.)2 l(x - n)4 - (x -n)2  | 

.)f"(.)|cx - n)3 - (x - n) (x - n) | + g,( 
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Note that 

(x- 

• 

n) 

(x - S)2 

(x - S)3 

(x - 5)4 

As 

((x - x) + (x - n))2 
v        -2 

-    x + As 

((x - x) + (x - n))3 3         v -    -3 
-    x + 3xAs+As 

-vx4 ((x - x) + (x - n)) *   3 - v -2  -A 
x + 4xA8+6xAs + As 

Substituting into (a.8) and (a.11) : 

(a.12)        ^    m    g(.) + g'COAi + Isg-C)   (i+Ai
2) 

(•.13)        Jx    .    gV.^x + ^'O^x-^ + AxAi + AxAi2) 

+ gVOg'^.)   (x + 2xA5) 

Again, we use the simplifying assumptions (see Appendix A.2) 

■  0 
3 
X 

k 
X 3 x 

Then,  (a.13) becomes: 

.2 v 
(a.14)        vx    .    g,(.)Zx + J5g"(.)2(x2 + 2xAS2) 

v  _ 
+ 2^ (.)%"(,) xAi 
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In sunnnary, we have: 

v      -    g(.) + W(.) n 

vm " g'(.)    n + ^"(.)2 n 

vx - g(.) + g'(.)Ai + Jäg"(.)   (x + Ai2) 

v 2   v 7     V9 v     o 
vx « g'C)    x + 5sg"(.r  (x* + 2xA;2) 

v  _ 
+ 2g,(.)g"(.)  xAi 

(a.2) 

(a.6) 

(a.12) 

(a.14) 

These equations are shown as Equations  (2.7)  through  (2.10). 

By subtraction, we get: 

(\  " V = 8'(-)Aä + %§"<.) (As +Ai2) 

V    v 7 v 

<vv - VJ  " g'C) As + 
? I v v   v     v  o I 

^"O A8(x + n) + 2xA;2 I 

+ 2g,(.)g,,(.) xAi 

These equations yield the correction terms for the effect of the 

Distribution Approximation and are shown as Equations  (2.11)  and 

(2.12). 
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Appendix A. 2;  Simplifying Assumptions 

In Chapter 2, we assessed correction terms for the mean and 

variance of the state variable and calculated the resulting correc- 

tion terms for the me/n and variance of the outcome variable.  For 

several linked submodels, we saw that the output variable of one 

submodel becomes the Input variable of the next and that we can 

sequentially calculate the correction terms for each Intermediate 

variable. 

Clearly, since we want to deal only with the mean and variance 

of each variable, we must eliminate all terms of higher order.  In 

developing the correction terms for the effect of the Distribution 

Approximation in Appendix A.l, we encountered the third and fourth 

central moments of the input variable and eliminated them by assuming 

the following: 

(s - I)3 

(s - s)A , v2 
3 s 

If we know only the mean and variance of a variable, we cannot 

reliably estimate its third central moment, which is a measure of the 

skewness of the distribution about the mean. We cannot even predict 

its sign.  Therefore, in the methodology, I make the assumption that 

the third central moment is equal to zero, which is true if the dis- 

tribution is symmetric. 
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On the other hand, we can estimate the fourth central 

moment If we know the variance, both are measures of the dis- 

tribution's dispersion about the mean. In fact, It turns out 

that the fourth central moment Is proportional, or nearly so, to 

the square of the variance for many of the named distributions. 

(See Table A.l) The ratio of the fourth central moment to the 

variance squared ranges from 1.8 for the uniform distribution 

to 9 for the exponential, but many of the distributions have 

ratios of about 3. Therefore, I assume for the purposes of the 

methodology that the fourth central moment Is equal to three times 

the variance squared. 
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Table A.l 

Distribution 
(parameters) 

Ratio of the fourth central 
moirent to the variance aquared 

1.  Uniform (a,b) 

a    b 
2.  Triangular  (a,b,c) 

9 
5 

11 
5 

for any a,b 

for any a,b,c 

ab      c 
3.  Trapezoidal  (a,b,c) 

ch 

a     b 
A.  Normal  (y,o) 

12   ÜJgSigc^cVj      for any 
5 (l+8c+18c +8c +c )     a,b 

for any y,a 

S.  Beta  (a,b) 

6.  Beta with b - 2 a 

J (b+2)(b+3) 

J (b+3) 

}-»- i^r] 

7.  Exponential  (X) for any X 

8.  Laplace  (X) for any X 

9. Gamma (a,ß) 

10.  Binomial  (n,p) 

11. Poisson (y) 

3 + ä 

n   2 

for any ß 

n p(l-p) 

3 + i V 
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Appendix A.3; Effect of the Dependence Approximation 

This appendix supplements Section 2.3, pp. 40-41. We 

characterize the Dependence Approximation by e : 

(b.l)     v v + e 
x 

Taking the mean: 

(b.2) v - v + e 
a   x 

Squaring (b.l) and taking the mean: 

(b.3) 2     2   2      
v   - v  + e  + 2v e ax x 

Squaring  (b.2) : 

(b.4) - 2 
v a 

-2    -2 
v   + e  + 2v e x x 

Subtracting (b.4) from (b.3) : 

(b.5) 
v 
V 

V       V 
v  + e + 2cov(v ,e) 

a     x x 

So, from (b.2) and (b.5)  , we have: 

(v - v ) 
a   x' 

v    V 
(v - v ) 

a   x e + 2cov(v ,r.) 
x 

These equations yield the correction terms for the effect of the 

Dependence Approximation and are shown as Equations  (2.14) and (2.15). 
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Appendix A.4; Calculation of e , e and cov(v,e) 

This appendix supplements Section 2.3, p. 42.  We can calculate 

_    v 
e , e and c.ov(v ,e) from the assessed conditional mean and 

variance of e , <e|d,s,4) and  v<e|d,s,4) as follows: 

(c.l) 

(c.2) 

v 
e 

v e 
x 

<e|d,4> 

<e|d,8,4>{6|4} 
•'s 

<e2|d.4> 

[ <e2|d,s,4>{s|4} 
•'s 

i     ( >|d.s,4>    +   <e|d.s,4>2){8|4} 
•'s 

V<e|d^> 

2 -2 
e      -    e 

i     (v<e|d.8,4>    +    <e|Q,s,4>2){8|4} 
•'s 

<vxe|d,4> 

I g(d,8) e  {s,e|d,A} 
'i Je 

I  g(d,. 
•'s 

-2 
- e 

s){s|d,4}      e{e|d,s,4} 

g(d,s) <e|d,s,4>{s|4} 
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cov(v ,e) - v e - v e 
X* X        X 

(c.3) -   g(d,8) <e|d,8,A>{8|4}   - vxe 

Equations (c.l)  ,  (c.2) and (c.3) yield the required calcula- 

tions and are shown as Equations (2.16) through (2.18). 
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Appendix A.5:  Special Case of the Dependence Approximation 

ThJ.8 appendix supplements Section 2.3, pp. 44-45. Suppose 

that we assess: 

<e|d,v.4>  - Av 

Then: 

'<e|d.vx,4>  - E vx 

<e|d,4>- I <«|d.v .A>W IM) 
J v 

-  f A v {-:  |d.4} j   xx1 

(d.l) - A v 

<e2|d,.\>-    <--2|d,vv,4>{vv|d,4} 

( V<e|d^   .4> +    <e|d,v  ,-i>2){v  |d,4} 
X XX 

V 

(B v 2 + A2v 2){v   Id,4} 
X XX1 

2        2 
»     (B + A )  v x 

e    -    (e|d,4) - e      -    e 

/n u. A2X       2 .2- 2 -(B + A)v      -Av 
x x 

(d.2) 
2    v - 2 

(B + A ) v      +    B v x x 
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v e 
x 

v e{v .eld,*} 
X        X       ' 

f v {v ld,4}fe{e|d,vx,A} 

f V^^'^^^^x*^ 

f A v {v   |d,4} 
X      x' 

A v 

cov(v  ,e) 

(d.3) 

v e - v e 
x x 

A v -    A v 
X X 

v 
A v 

Then, the correction terms for the effect of the Dependence 

Approximation are: 

(v - v ) 
a   x 

A v 

(v - v )  - e + 2cov(v ,e) -  (B + 2A+A2) v + B v 2 v a   x x xx 

These equations are shown as Equations  (2.22)  and  (2.23). 
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Appendix A. 6; Multlvarlate Case 

This appendix supplements Section 2.5, pp. 50-51. Assume that 

there are N state variables. We use the following matrix notation: 

s^ , n and x are N-dlmenslonal column vectors 

w - vg(d»8) L ^ - , an N-dlm. row vector 

W-ww,anNxN    matrix 

1_ ■ an N-dim. column vector of all I's 

11      , an N x N matrix of all I's 

6g(d,8) 

U ös^s 
s ■ n 

an    N x N    matrix 
G -K]' 
G:n    -    [«uOlt - 5^ - Sj)]     . 

G:x - [G^CX.-^XXJ -n^j  . 

G:cov(n) - U covC^.n.) 

G:cov(x) -  Giicov(xi»xiM 

an N x N matrix 

an N x N matrix 

,  an N x N matrix 

, an N x N matrix 

an N x N matrix 

Note that, for a matrix M , 1^ M 1 Is the sum of all of the 

elements of M. 
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Also note that: 

- T       -     T 
(n - n) G (n - n) - 1 G:n 1    ,    a scalar 

G:n - G:cov(n) 

G:x - G:cov(x) + G:A8 

We characterize the Distribution Approximation by: 

As x    -    n 

V V V 
As    -    x    -    n 

We expand    v      »    g(d,n)    about    n m — — 

(e.l)       v^    ■    g(d,n) + w(n - n)  +1$ 1T G:n 1 

Taking the mean: 

(e.2)      v      HI    g(d,n) + ^ 1    G:cov(n)  1 

Squaring  (e.l)  and taking the mean: 

vn
2 = g(d,n)2 + 1T W:n 1 + »s 1T G:nLG:nl 

+ 2g(d,n) w (n - n) + g(d,n) 1T G:n 1 

+ w (n - n) 1T G:n 1 

(e.3) -x2 . ,T 
g(d,n) + 1 W:cov(n) 1 + ^ 1  G:n L G:n 1 

+ g(d,n) 1T G:cov(n) 1 + w(n - n) 1T G:n 1 
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Squaring (e.2) : 

(e.4) - 2 
v m g(d,n) + h I    G:cov(n) L G:cov(n) 1 . 

nl iT n- + g(d,n) 1 G:cov(n) 1^ 

Subtracting (e.A) from (e.3) : 

v ,T (e.5) vm    =    1    W:cov(n)  1 

+ ^ I1 I G:n L G:n  - G:cov(n) L G:cov(n) 

w (n - n) 1   G:n 1 

(e.6) 

Now, we expand    v    - g(d,x)    about n : 

vx    ■    g(d,n) + w (x - n) + »s I1 G:x 1 

Taking the mean: 

(e.7) v g(d,n) + wAs + »a 1T   G:cov(x) + GtAs U 

Squaring    (e.6)    and taking the mean: 

-.2 
■    g(d,n;    +1    W:x 1 + ^ I1 G:x L Gtx 1 

+ 2g(d,n) w (x - n) + g(d,n)  1T G:x 1 

+ w (x - n) 1    G:x 1 
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(e.8) ;(d,n)    + 1T    W:cov(x) + W:As    1 

+ h 1   G:x L G:x 1 

+ 2g(d,n)  wAi + g 

+ Ü (i - n) i     G:x 1 

(d,n)  1      G:cov(x) + G:A8    1 

Squaring    (e.7)   : 

(e.9) vx     ■    fefd.n)2 + lT W:Ai l 

+   Hi     G:cov(x) + G:Ai    L    G:cov(x) + G:A£ |l 

+    2g(d,n) wAs + g(d,n) 1T FGtcovCx) + G:A£] i 

+   wAs 1      G:cov(x) + G:As    1 

Subtracting    (e.9)    from    (e.8)   : 

(e.10) vx    >    1T    W:cov(x)  1 + Js lT    G:x L G:x 1 

-hi      G:cov(x) + G:Ai    L    G:cov(x) + G:Ai    1 

+ w /(x - n) 1  G:x 1 - /^ lT rG!cov(x) + G^il 1 

Subtracting (e.2) from (e.7) and (e.5) from (e.10)  . we 

obtain the estimated correction terms for the effect of the Distri- 

bution Approximation: 

(e.ll) (vx - vj    = „Ai + H 1
T
[G: cov(x) - G:cov(n) + G :A£ 1 
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V    V 
(v - V ) 
x   m i" W:cov(x) - W!cov(n) 

| G:x L G:x - + h  1 G:n L G:n 

(e.12) 
- G:cov(x) + GiAs L G:cov(x)+G:As 

+ G:cov(n) L G:cov(n) 1 

^ w | (x - n) 1T G:x I-  (n - n) 1T Gin 1 

" Ai 1T G:cov(x) + GrAs 1 | 

These equations are not useful because they require more information 

than we have about the two distributions on e.  However, when the 

state variables are mutually independent, these equations reduce to 

a more useful form. Letting gi and g^ denote the partial de- 

3        i« 

rivatives of g and letting s and s denote the third- and 

fourth central moments, we have for mutually independent state 

variables: 

(e,i3) 

(vx " V " J «iWÄ^i + ^ Igli(d.n)A8l 
i i 

+ *!    I  gij(<i.n)Ai1Ai 
1 j 
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&x " V    *   ^i^'^ A*l 

+ k ItüW.s) («i-«i "»i* ni +AxiA8i+ 4xiA8i 

(•.14) 

5ii 
i 

_ovv     vv     v     -2V.-2N 

+ J g1(d,n)gJi(d,n)(ii - ^ + Zx^) 
i 

+ I    I g^d.^g  .(d.n)   2x^8 
1 j*l J 

To eliminate the third-    and fourth-order terms, we apply the 

simplifying assumptions   (see Appendix A. 2)   : 

0 

) 

3 

S 

s 
, ^2 
3 s 

Then (e.lA) becomes: 

-.2.v 

(e.15) 

_9vv vv  v _2  v
1-2. 

+ >lX I gijCd.n) (x^-n^+x^ + xjAsi ) 

1 J 

+ I I XiijW.a)SikW.n) x1AsjAsk 

- v _ 
+ 2l I  g1^,n)glj(d,n) x^ 

Equations  (e.13) and (e.15) yield the estimated correction terms 

for the effect of the  Distribu-ion Approximation for independent state 

variables and are shown as Equations  (2.27)  and  (2.28). 
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